MAPPING FOREST VERTICAL STRUCTURE ATTRIBUTES WITH GEDI, SENTINEL-1, AND SENTINEL-2

被引:0
|
作者
Tsutsumida, Narumasa [1 ]
Kato, Akira [2 ]
Osawa, Takeshi [3 ]
Doi, Hideyuki [4 ]
机构
[1] Saitama Univ, Saitama, Japan
[2] Chiba Univ, Chiba, Japan
[3] Tokyo Metropolitan Univ, Tokyo, Japan
[4] Kyoto Univ, Kyoto, Japan
关键词
Forest Structure Index; RandomForest; Japan;
D O I
10.1109/IGARSS52108.2023.10283403
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presents a method for mapping forest vertical structures using fused satellite data sets, including data from Global Ecosystem Dynamics Investigation (GEDI) mission, Sentinel-1 and -2, by a Random Forest classifier. The method aims to develop an effective yet simple way to map the foliage height diversity, plant area index, canopy height, and forest structure index, which is a composite index of these three metrics. They are mapped at 10 m spatial resolution, which can provide information about the distribution and functioning of different plant functional types and canopy layers in a forest. The approach was tested in an area around Mt. Washibetsu, Hokkaido, Japan, and demonstrated the feasibility of capturing forest vertical structures using satellite remote sensing, which has important implications for forest management and conservation.
引用
收藏
页码:538 / 541
页数:4
相关论文
共 50 条
  • [1] Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data
    Kacic, Patrick
    Thonfeld, Frank
    Gessner, Ursula
    Kuenzer, Claudia
    [J]. REMOTE SENSING, 2023, 15 (08)
  • [2] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [3] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    [J]. GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [4] GEDI AND SENTINEL-2 INTEGRATION FOR MAPPING COMPLEX WETLANDS
    Adeli, Sarina
    Quackenbush, Lindi J.
    Salehi, Bahram
    Mahdianpari, Masoud
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5635 - 5637
  • [5] COUPLING SENTINEL-1 AND SENTINEL-2 IMAGES FOR OPERATIONAL SOIL MOISTURE MAPPING
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Bazzi, Hassan
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5537 - 5540
  • [6] An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping
    Ghorbanzadeh, Omid
    Didehban, Khalil
    Rasouli, Hamid
    Kamran, Khalil Valizadeh
    Feizizadeh, Bakhtiar
    Blaschke, Thomas
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [7] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    [J]. Arabian Journal of Geosciences, 2022, 15 (20)
  • [8] Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI
    Wang, Chu
    Zhang, Wangfei
    Ji, Yongjie
    Marino, Armando
    Li, Chunmei
    Wang, Lu
    Zhao, Han
    Wang, Mengjin
    [J]. FORESTS, 2024, 15 (01):
  • [9] Mapping Floods in Lowland Forest Using Sentinel-1 and Sentinel-2 Data and an Object-Based Approach
    Gasparovic, Mateo
    Klobucar, Damir
    [J]. FORESTS, 2021, 12 (05):
  • [10] Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths and challenges
    Wangchuk, Sonam
    Bolch, Tobias
    [J]. SCIENCE OF REMOTE SENSING, 2020, 2