MAPPING FOREST VERTICAL STRUCTURE ATTRIBUTES WITH GEDI, SENTINEL-1, AND SENTINEL-2

被引:0
|
作者
Tsutsumida, Narumasa [1 ]
Kato, Akira [2 ]
Osawa, Takeshi [3 ]
Doi, Hideyuki [4 ]
机构
[1] Saitama Univ, Saitama, Japan
[2] Chiba Univ, Chiba, Japan
[3] Tokyo Metropolitan Univ, Tokyo, Japan
[4] Kyoto Univ, Kyoto, Japan
关键词
Forest Structure Index; RandomForest; Japan;
D O I
10.1109/IGARSS52108.2023.10283403
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presents a method for mapping forest vertical structures using fused satellite data sets, including data from Global Ecosystem Dynamics Investigation (GEDI) mission, Sentinel-1 and -2, by a Random Forest classifier. The method aims to develop an effective yet simple way to map the foliage height diversity, plant area index, canopy height, and forest structure index, which is a composite index of these three metrics. They are mapped at 10 m spatial resolution, which can provide information about the distribution and functioning of different plant functional types and canopy layers in a forest. The approach was tested in an area around Mt. Washibetsu, Hokkaido, Japan, and demonstrated the feasibility of capturing forest vertical structures using satellite remote sensing, which has important implications for forest management and conservation.
引用
收藏
页码:538 / 541
页数:4
相关论文
共 50 条
  • [31] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
    Attarzadeh, Reza
    Amini, Jalal
    Notarnicola, Claudia
    Greifeneder, Felix
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [32] Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data
    Elwan, Ehsan
    Le Page, Michel
    Jarlan, Lionel
    Baghdadi, Nicolas
    Brocca, Luca
    Modanesi, Sara
    Dari, Jacopo
    Quintana Segui, Pere
    Zribi, Mehrez
    [J]. WATER, 2022, 14 (05)
  • [33] Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and Sentinel-2 Time Series
    Ottinger, Marco
    Bachofer, Felix
    Huth, Juliane
    Kuenzer, Claudia
    [J]. REMOTE SENSING, 2022, 14 (01)
  • [34] Mapping dead understorey Buxus hyrcana Pojark using Sentinel-2 and Sentinel-1 data
    Saba, Fatemeh
    Latifi, Hooman
    Zoej, Mohammad Javad Valadan
    Esmaili, Rohollah
    [J]. FORESTRY, 2023, 96 (02): : 228 - 248
  • [35] Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
    Konapala, Goutam
    Kumar, Sujay, V
    Ahmad, Shahryar Khalique
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 180 : 163 - 173
  • [36] A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery
    Xun, Lan
    Zhang, Jiahua
    Cao, Dan
    Yang, Shanshan
    Yao, Fengmei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 181 : 148 - 166
  • [37] Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine
    Ghorbanian, Arsalan
    Zaghian, Soheil
    Asiyabi, Reza Mohammadi
    Amani, Meisam
    Mohammadzadeh, Ali
    Jamali, Sadegh
    [J]. REMOTE SENSING, 2021, 13 (13)
  • [38] Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2
    Orynbaikyzy, Aiym
    Gessner, Ursula
    Conrad, Christopher
    [J]. REMOTE SENSING, 2022, 14 (06)
  • [39] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [40] Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass
    Fang, Gengsheng
    Yu, Hangyuan
    Fang, Luming
    Zheng, Xinyu
    [J]. FORESTS, 2023, 14 (08):