SPATIO-TEMPORAL INDEXING OF THE QUIKSCAT WIND DATA

被引:1
|
作者
Rodriguez, Felix R. [1 ]
Barrena, Manuel [1 ]
机构
[1] Univ Extremadura, Dept Engn Informat & Telemat Syst, Caceres, Spain
关键词
Spatio-temporal indexing; Spatio-temporal databases; GIS; Geospatial data; Geocomputation;
D O I
10.1109/IGARSS.2009.5418129
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Global wind data are increasingly used in many applications and research fields, mainly because It provides global coverage of ocean winds with an unprecedented view, and data are available at a sufficiently large spatial scale and high temporal resolution. Global wind data provided by QuikSCAT is highly variable and needs a completely adapted index to enhance the retrieval process of the desired data. A novel indexing method has been developed. named Q-full-tree, integrating two existing structures: Q-tree. as the spatial index. and LV-tree, as the temporal index Also, a particularized bulk load process for the QuikSCAT data has been designed. Q-full-tree remains completely accessible all wind data from the QuikSCAT since the satellite was launched, at any granularity, any spatial query, and any time Interval.
引用
收藏
页码:754 / 757
页数:4
相关论文
共 50 条
  • [31] A Spatio-Temporal Indexing Structure for Efficient Retrieval and Manipulation of Discretely Changing Spatial Data
    Halaoui, H. F.
    [J]. JOURNAL OF SPATIAL SCIENCE, 2008, 53 (02) : 1 - 12
  • [32] Cymo: A Storage Model with Query-Aware Indexing for Spatio-Temporal Big Data
    Guo, Yang
    Shao, Zili
    [J]. 2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 122 - 132
  • [33] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [34] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [35] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [36] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [37] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [38] Study on Spatio-Temporal Indexing Model of Geohazard Monitoring Data Based on Data Stream Clustering Algorithm
    Li, Jiahao
    Song, Weiwei
    Chen, Jianglong
    Wei, Qunlan
    Wang, Jinxia
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (03)
  • [39] DEEP SPATIO-TEMPORAL WIND POWER FORECASTING
    Li, Jiangyuan
    Armandpour, Mohammadreza
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4138 - 4142
  • [40] Simulation of Wind Speeds with Spatio-Temporal Correlation
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Feijoo-Lorenzo, Andres E.
    Martinez-Torres, Javier
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (08):