Differentiation of human adipose-derived stem cells into beating cardiomyocytes

被引:160
|
作者
Choi, Yu Suk [1 ,2 ]
Dusting, Gregory J. [1 ,2 ]
Stubbs, Samantha [1 ,2 ]
Arunothayaraj, Sandeep [1 ]
Han, Xiao Lian [1 ]
Collas, Philippe [3 ]
Morrison, Wayne A. [1 ,2 ]
Dilley, Rodney J. [1 ,2 ,4 ]
机构
[1] OBrien Inst, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Surg, St Vincents Hosp, Melbourne, Vic, Australia
[3] Univ Oslo, Inst Basic Med Sci, Fac Med, Oslo, Norway
[4] Australian Tissue Engn Ctr, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
adipose-derived stem cell; cardiomyocyte; cardiomyogenic differentiation; epigenetic modification; co-culture; HISTONE DEACETYLASE ACTIVITY; MARROW STROMAL CELLS; IN-VITRO; TISSUE;
D O I
10.1111/j.1582-4934.2010.01009.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Human adipose-derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5-azacytidine (5-aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co-culture with neonatal rat cardiomyocytes. 5-aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5- to 1.9-fold) and the number of cells co-expressing nkx2.5/sarcomeric alpha-actin (27.2% versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11-fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA-treated cells also stained positively for cardiac myosin heavy chain, alpha-actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non-contact co-culture showed no cardiac differentiation; however, ASCs co-cultured in direct contact co-culture exhibited a time-dependent increase in cardiac actin mRNA expression (up to 33-fold) between days 3 and 14. Immunocytochemistry revealed co-expression of GATA4 and Nkx2.5, alpha-actin, TropI and cardiac myosin heavy chain in CM-DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell-to-cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co-culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.
引用
收藏
页码:878 / 889
页数:12
相关论文
共 50 条
  • [31] Evaluation of adhesion, proliferation, and differentiation of human adipose-derived stem cells on keratin
    Lin, Che-Wei
    Yang, Kai-Chiang
    Cheng, Nai-Chen
    Tsai, Wei-Bor
    Lou, Kuo-Long
    Yu, Jiashing
    JOURNAL OF POLYMER RESEARCH, 2018, 25 (02)
  • [32] In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds
    Kim, Hyeon Joo
    Park, Sang-Hyug
    Durham, Jennah
    Gimble, Jeffrey M.
    Kaplan, David L.
    Dragoo, Jason L.
    JOURNAL OF TISSUE ENGINEERING, 2012, 3 (01) : 1 - 8
  • [33] Clonal analysis of the differentiation potential of human adipose-derived adult stem cells
    Guilak, F
    Lott, KE
    Awad, HA
    Cao, QF
    Hicok, KC
    Fermor, B
    Gimble, JM
    JOURNAL OF CELLULAR PHYSIOLOGY, 2006, 206 (01) : 229 - 237
  • [34] The effect of quercetin on hepatic differentiation of human adipose-derived mesenchymal stem cells
    Pinchuk S.V.
    Vasilevich I.B.
    Kvacheva Z.B.
    Volotovski I.D.
    Cell and Tissue Biology, 2016, 10 (5) : 357 - 364
  • [35] PAMM Does not Affect Adipogenic Differentiation of Human Adipose-derived Stem Cells
    Zhang Ming-Meng
    Wang Ying
    Liang Jie
    Wu Hong-Fu
    Shi Yu-Cang
    Wu Zhi-Yuan
    Rao Min-La
    Peng Jian-Yu
    Jiang Zhi-Wen
    Liu Xin-Guang
    Sun Xue-Rong
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2022, 49 (07) : 1305 - 1317
  • [36] Inhibitory effect of celastrol on adipogenic differentiation of human adipose-derived stem cells
    Hong, Wonjun
    Park, Junghyun
    Yun, Wonjin
    Kang, Phil Jun
    Son, Daryeon
    Jang, Jihoon
    Kim, In Yong
    You, Seungkwon
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 507 (1-4) : 236 - 241
  • [37] Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells
    Sun, Bo Kyung
    Kim, Ji Hye
    Choi, Joon-Seok
    Hwang, Sung-Joo
    Sung, Jong-Hyuk
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (07): : 16655 - 16668
  • [38] Comparison of Endothelial Differentiation Capacities of Human and Rat Adipose-Derived Stem Cells
    Orbay, Hakan
    Devi, Kamaljit
    Williams, Priscilla A.
    Dehghani, Tima
    Silva, Eduardo A.
    Sahar, David E.
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2016, 138 (06) : 1231 - 1241
  • [39] The isolation and differentiation of human adipose-derived stem cells using membrane filtration
    Wu, Cheng-Han
    Lee, Fa-Kung
    Kumar, Suresh
    Ling, Qing-Dong
    Chang, Yung
    Chang, Yu
    Wang, Han-Chow
    Chen, Hui
    Chen, Da-Chung
    Hsu, Shih-Tien
    Higuchi, Akon
    BIOMATERIALS, 2012, 33 (33) : 8228 - 8239
  • [40] Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells
    Liu, Guangpeng
    Zhou, Heng
    Li, Yulin
    Li, Gang
    Cui, Lei
    Liu, Wei
    Cao, Yilin
    CRYOBIOLOGY, 2008, 57 (01) : 18 - 24