Differentiation of human adipose-derived stem cells into beating cardiomyocytes

被引:160
|
作者
Choi, Yu Suk [1 ,2 ]
Dusting, Gregory J. [1 ,2 ]
Stubbs, Samantha [1 ,2 ]
Arunothayaraj, Sandeep [1 ]
Han, Xiao Lian [1 ]
Collas, Philippe [3 ]
Morrison, Wayne A. [1 ,2 ]
Dilley, Rodney J. [1 ,2 ,4 ]
机构
[1] OBrien Inst, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Surg, St Vincents Hosp, Melbourne, Vic, Australia
[3] Univ Oslo, Inst Basic Med Sci, Fac Med, Oslo, Norway
[4] Australian Tissue Engn Ctr, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
adipose-derived stem cell; cardiomyocyte; cardiomyogenic differentiation; epigenetic modification; co-culture; HISTONE DEACETYLASE ACTIVITY; MARROW STROMAL CELLS; IN-VITRO; TISSUE;
D O I
10.1111/j.1582-4934.2010.01009.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Human adipose-derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5-azacytidine (5-aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co-culture with neonatal rat cardiomyocytes. 5-aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5- to 1.9-fold) and the number of cells co-expressing nkx2.5/sarcomeric alpha-actin (27.2% versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11-fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA-treated cells also stained positively for cardiac myosin heavy chain, alpha-actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non-contact co-culture showed no cardiac differentiation; however, ASCs co-cultured in direct contact co-culture exhibited a time-dependent increase in cardiac actin mRNA expression (up to 33-fold) between days 3 and 14. Immunocytochemistry revealed co-expression of GATA4 and Nkx2.5, alpha-actin, TropI and cardiac myosin heavy chain in CM-DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell-to-cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co-culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.
引用
收藏
页码:878 / 889
页数:12
相关论文
共 50 条
  • [11] Differentiation of human adipose-derived stem cells into endometrial epithelial cells
    Fang, Yang
    Zhang, Wan-Lin
    Chen, Shu-Qiang
    Sun, Hui-Jun
    Lu, Jie
    Xiao, Xi-Feng
    Wang, Xiao-Hong
    REPRODUCTIVE AND DEVELOPMENTAL MEDICINE, 2020, 4 (03) : 137 - 145
  • [12] Chondrogenic differentiation of adipose-derived stem cells
    Goldschlager, Tony
    Rosenfeld, Jeffrey Victor
    Jenkin, Graham
    Ghosh, Peter
    ANZ JOURNAL OF SURGERY, 2009, 79 (11) : 856 - 857
  • [13] Differentiation of human adipose-derived stem cells towards cardiomyocytes; The role of the extracellular matrix molecules fibronectin and laminin
    van Dijk, A.
    Niessen, H. W. M.
    Visser, F. C.
    van Milligen, F. J.
    STEM CELLS, 2007, 25 (12) : 3281 - 3281
  • [14] The Role of Calcium in Differentiation of Human Adipose-Derived Stem Cells to Adipocytes
    Goudarzi, Farjam
    Mohammadalipour, Adel
    Khodadadi, Iraj
    Karimi, Sheno
    Mostoli, Rezvan
    Bahabadi, Majid
    Goodarzi, Mohammad Taghi
    MOLECULAR BIOTECHNOLOGY, 2018, 60 (04) : 279 - 289
  • [15] Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells
    Monireh Shahbodi
    Seyed Ahmad Emami
    Behjat Javadi
    Zahra Tayarani-Najaran
    Cell Biochemistry and Biophysics, 2022, 80 : 771 - 779
  • [16] New insights into epithelial differentiation of human adipose-derived stem cells
    Baer, Patrick C.
    Doering, Claudia
    Hansmann, Martin-Leo
    Schubert, Ralf
    Geiger, Helmut
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (04) : 271 - 278
  • [17] Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells
    Strong, Amy L.
    Hunter, Ryan S.
    Jones, Robert B.
    Bowles, Annie C.
    Dutreil, Maria F.
    Gaupp, Dina
    Hayes, Daniel J.
    Gimble, Jeffrey M.
    Levi, Benjamin
    McNulty, Margaret A.
    Bunnell, Bruce A.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
  • [18] Adipogenic differentiation of human adipose-derived stem cells grown as spheroids
    Turner, Paul A.
    Gurumurthy, Bhuvaneswari
    Bailey, Jennifer L.
    Elks, Carrie M.
    Janorkar, Amol V.
    PROCESS BIOCHEMISTRY, 2017, 59 : 312 - 320
  • [19] Neuronal Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells
    Anghileri, Elena
    Marconi, Silvia
    Pignatelli, Angela
    Cifelli, Pierangelo
    Galie, Mirco
    Sbarbati, Andrea
    Krampera, Mauro
    Belluzzi, Ottorino
    Bonetti, Bruno
    STEM CELLS AND DEVELOPMENT, 2008, 17 (05) : 909 - 916
  • [20] Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells
    Amy L. Strong
    Ryan S. Hunter
    Robert B. Jones
    Annie C. Bowles
    Maria F. Dutreil
    Dina Gaupp
    Daniel J. Hayes
    Jeffrey M. Gimble
    Benjamin Levi
    Margaret A. McNulty
    Bruce A. Bunnell
    Journal of Translational Medicine, 14