Combinatorially equivalent hyperplane arrangements

被引:2
|
作者
Palezzato, Elisa [1 ]
Torielli, Michele [2 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Kite 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[2] Hokkaido Univ, Dept Math, GI CoRE GSB, Kita Ku, Kite 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
基金
日本学术振兴会;
关键词
Hyperplane arrangements; Lattice of intersections; Combinatorially equivalent; Terao's conjecture; Modular methods; SUBSPACE ARRANGEMENTS;
D O I
10.1016/j.aam.2021.102202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong sigma-Grobner bases. Moreover, we prove that the Terao's conjecture over finite fields implies the conjecture over the rationals. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS
    EDELSBRUNNER, H
    SEIDEL, R
    SHARIR, M
    SIAM JOURNAL ON COMPUTING, 1993, 22 (02) : 418 - 429
  • [42] More Bisections by Hyperplane Arrangements
    Blagojevic, Pavle V. M.
    Blagojevic, Aleksandra Dimitrijevic
    Karasev, Roman
    Kliem, Jonathan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 33 - 64
  • [43] Deformations of Coxeter hyperplane arrangements
    Postnikov, A
    Stanley, RP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 544 - 597
  • [44] Branched Polymers and Hyperplane Arrangements
    Meszaros, Karola
    Postnikov, Alexander
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) : 22 - 38
  • [45] Hyperplane arrangements and box splines
    De Concini, C.
    Procesi, C.
    Bjorner, A.
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 : 201 - 225
  • [46] Projection Volumes of Hyperplane Arrangements
    Caroline J. Klivans
    Ed Swartz
    Discrete & Computational Geometry, 2011, 46
  • [47] Hyperplane arrangements in preference modeling
    Ovchinnikov, S
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2005, 49 (01) : 111 - 111
  • [48] The Monodromy Conjecture for hyperplane arrangements
    Budur, Nero
    Mustata, Mircea
    Teitler, Zach
    GEOMETRIAE DEDICATA, 2011, 153 (01) : 131 - 137
  • [49] Random walks and hyperplane arrangements
    Brown, KS
    Diaconis, P
    ANNALS OF PROBABILITY, 1998, 26 (04): : 1813 - 1854
  • [50] The Monodromy Conjecture for hyperplane arrangements
    Nero Budur
    Mircea Mustaţă
    Zach Teitler
    Geometriae Dedicata, 2011, 153 : 131 - 137