Combinatorially equivalent hyperplane arrangements

被引:2
|
作者
Palezzato, Elisa [1 ]
Torielli, Michele [2 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Kite 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[2] Hokkaido Univ, Dept Math, GI CoRE GSB, Kita Ku, Kite 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
基金
日本学术振兴会;
关键词
Hyperplane arrangements; Lattice of intersections; Combinatorially equivalent; Terao's conjecture; Modular methods; SUBSPACE ARRANGEMENTS;
D O I
10.1016/j.aam.2021.102202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong sigma-Grobner bases. Moreover, we prove that the Terao's conjecture over finite fields implies the conjecture over the rationals. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条