On extensions of intermediate logics by strong negation

被引:37
|
作者
Kracht, M [1 ]
机构
[1] Free Univ Berlin, Inst Math & Informat 2, Fachbereich Math & Informat, D-14195 Berlin, Germany
关键词
constructive logic; intuitionistic logic; Nelson algebras; lattices logics;
D O I
10.1023/A:1004222213212
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
In this paper we will study the properties of the least extension n(Λ) of a given intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model property, frame-completeness, interpolation and decidability. A general characterization of those constructive logics is given which are of the form n(A). This summarizes results that can be found already in [13, 14] and [4]. Furthermore, we determine the structure of the lattice of extensions of n(LC). © 1998 Kluwer Academic Publishers.
引用
收藏
页码:49 / 73
页数:25
相关论文
共 50 条
  • [41] On intermediate justification logics
    Pischke, Nicholas
    LOGIC JOURNAL OF THE IGPL, 2023, 31 (03) : 534 - 573
  • [42] On the rules of intermediate logics
    Iemhoff, Rosalie
    ARCHIVE FOR MATHEMATICAL LOGIC, 2006, 45 (05) : 581 - 599
  • [43] UNIFICATION IN INTERMEDIATE LOGICS
    Iemhoff, Rosalie
    Roziere, Paul
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (03) : 713 - 729
  • [44] INTERMEDIATE LOGICS .2
    HOSOI, T
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1969, 16 : 1 - &
  • [45] Strong Paraconsistency and Exclusion Negation
    Berto, Francesco
    LOGICA YEARBOOK 2008, 2009, : 15 - 25
  • [46] Some extensions of the echoic analysis of metalinguistic negation
    Iwata, S
    LINGUA, 1998, 105 (1-2) : 49 - 65
  • [47] Axiomatization of Boolean Connexive Logics with syncategorematic negation and modalities
    Jarmuzek, T.
    Malinowski, J.
    Parol, A.
    Zamperlin, N.
    LOGIC JOURNAL OF THE IGPL, 2024,
  • [48] Double-Negation Elimination in Some Propositional Logics
    Michael Beeson
    Robert Veroff
    Larry Wos
    Studia Logica, 2005, 80 (2-3) : 195 - 234
  • [49] Canonical extensions and relational representations of lattices with negation
    Almeida A.
    Studia Logica, 2009, 91 (2) : 171 - 199
  • [50] Logics for Information Systems and Their Dynamic Extensions
    Khan, Md Aquil
    Banerjee, Mohua
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2011, 12 (04)