On extensions of intermediate logics by strong negation

被引:37
|
作者
Kracht, M [1 ]
机构
[1] Free Univ Berlin, Inst Math & Informat 2, Fachbereich Math & Informat, D-14195 Berlin, Germany
关键词
constructive logic; intuitionistic logic; Nelson algebras; lattices logics;
D O I
10.1023/A:1004222213212
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
In this paper we will study the properties of the least extension n(Λ) of a given intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model property, frame-completeness, interpolation and decidability. A general characterization of those constructive logics is given which are of the form n(A). This summarizes results that can be found already in [13, 14] and [4]. Furthermore, we determine the structure of the lattice of extensions of n(LC). © 1998 Kluwer Academic Publishers.
引用
收藏
页码:49 / 73
页数:25
相关论文
共 50 条
  • [31] STATES ON SYMMETRIC LOGICS: EXTENSIONS
    Bikchentaev, Airat
    Navara, Mirko
    MATHEMATICA SLOVACA, 2016, 66 (02) : 359 - 366
  • [32] Abelian Extensions of Quantum Logics
    Feldman, D. V.
    Wilce, A.
    International Journal of Theoretical Physics, 37 (01):
  • [33] Finite axiomatizability of logics of distributive lattices with negation
    Marcelino, Sergio
    Rivieccio, Umberto
    LOGIC JOURNAL OF THE IGPL, 2023, 31 (03) : 510 - 533
  • [34] Logics with probabilistic team semantics and the Boolean negation
    Hannula, Miika
    Hirvonen, Minna
    Kontinen, Juha
    Mahmood, Yasir
    Meier, Arne
    Virtema, Jonni
    JOURNAL OF LOGIC AND COMPUTATION, 2025, 35 (03)
  • [35] Abelian Extensions of Quantum Logics
    David V. Feldman
    Alexander Wilce
    International Journal of Theoretical Physics, 1998, 37 : 39 - 43
  • [36] Abelian extensions of quantum logics
    Feldman, DV
    Wilce, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (01) : 39 - 43
  • [37] ON INTERMEDIATE PROPOSITIONAL LOGICS
    TROELSTR.AS
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1965, 68 (01): : 141 - &
  • [38] Topologies for intermediate logics
    Caramello, Olivia
    MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (4-5) : 335 - 347
  • [39] On the rules of intermediate logics
    Rosalie Iemhoff
    Archive for Mathematical Logic, 2006, 45 : 581 - 599
  • [40] LOGICS AND INTERMEDIATE CATEGORIES
    Santamaria Ramirez, Fanny Milena
    BOLETIN DE MATEMATICAS, 2008, 15 (01): : 56 - 69