Experimental Analysis of 3D Cracking in Drying Soils Using Ground-Penetrating Radar

被引:27
|
作者
Levatti, H. U. [1 ,2 ]
Prat, P. C. [3 ]
Ledesma, A. [4 ]
Cuadrado, A. [4 ]
Cordero, J. A. [4 ]
机构
[1] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Barcelona 08034, Spain
[3] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Room D2-202b,Jordi Girona 1-3,Edifici D2, Barcelona 08034, Spain
[4] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Jordi Girona 1-3,Edifici D2,Room D2-209, Barcelona 08034, Spain
来源
GEOTECHNICAL TESTING JOURNAL | 2017年 / 40卷 / 02期
关键词
desiccation cracks; auscultation; ground-penetrating radar;
D O I
10.1520/GTJ20160066
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper describes the capabilities of a novel technique to investigate crack formation and propagation in drying soils. The technique is a relatively simple, non-destructive indirect technique using a ground-penetrating-radar (GPR) system to detect cracks that form and propagate inside a soil specimen during desiccation. Although GPR devices have been used for multiple applications, their use in soils for the detection of small desiccation cracks has not been demonstrated yet. The experiment and the methodology used to test the accuracy of a small compact commercial GPR device for crack identification are described. The main objective was to identify what type of signals and what crack width and separation between them can be detected using the GPR device. The results indicate that cracks of 1 or 2mm wide can be detected depending on its position and shape, whereas sub-millimeter cracks are undetectable with the currently existing devices in the market. Regardless of this limitation, the GPR method can be useful to find time-related bounds of when the cracks appear, to point at their location and sometimes at the separation between two of them. Detection of cracks with origin at the bottom or within the specimen was accomplished with this system. Distances of 5 cm or more between cracks can be detected and measured, as well, with accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Sensitive Vibration Detection Using Ground-Penetrating Radar
    Wetherington, Joshua M.
    Steer, Michael B.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (12) : 680 - 682
  • [32] DELINEATION OF SHALLOW STRATIGRAPHY USING GROUND-PENETRATING RADAR
    DOMINIC, DF
    EGAN, K
    CARNEY, C
    WOLFE, PJ
    BOARDMAN, MR
    JOURNAL OF APPLIED GEOPHYSICS, 1995, 33 (1-3) : 167 - 175
  • [33] USING GROUND-PENETRATING RADAR TO PINPOINT PIPELINE LEAKS
    GRAF, FL
    MATERIALS PERFORMANCE, 1990, 29 (04) : 27 - 29
  • [34] 3-D ground-penetrating radar applied to fracture imaging in gneiss
    Grasmueck, M
    GEOPHYSICS, 1996, 61 (04) : 1050 - 1064
  • [35] Detection of Root Orientation Using Ground-Penetrating Radar
    Liu, Qixin
    Cui, Xihong
    Liu, Xinbo
    Chen, Jin
    Chen, Xuehong
    Cao, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 93 - 104
  • [36] Subsurface imaging using ground-penetrating radar measurements
    Goodman, N
    Leuschen, C
    Plumb, R
    Allen, C
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 2036 - 2037
  • [37] Estimation of saline regions using ground-penetrating radar
    Onishi, K
    Rokugawa, S
    Katoh, Y
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, VOLS 1 AND 2, 2004, : 509 - 512
  • [38] PROFILING OF PONDS AND BOGS USING GROUND-PENETRATING RADAR
    MELLETT, JS
    JOURNAL OF PALEOLIMNOLOGY, 1995, 14 (03) : 233 - 240
  • [39] Railroad Ballast Evaluation Using Ground-Penetrating Radar
    Leng, Zhen
    Al-Qadi, Imad L.
    TRANSPORTATION RESEARCH RECORD, 2010, (2159) : 110 - 117
  • [40] The Design of 3-D Ground-Penetrating Radar System for Bridge Inspection
    Shi, Xinghua
    Zhang, Anxue
    Han, Guoqing
    Yin, Yuemeng
    Chen, Wenchao
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21276 - 21285