Experimental Analysis of 3D Cracking in Drying Soils Using Ground-Penetrating Radar

被引:27
|
作者
Levatti, H. U. [1 ,2 ]
Prat, P. C. [3 ]
Ledesma, A. [4 ]
Cuadrado, A. [4 ]
Cordero, J. A. [4 ]
机构
[1] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Barcelona 08034, Spain
[3] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Room D2-202b,Jordi Girona 1-3,Edifici D2, Barcelona 08034, Spain
[4] Tech Univ Catalonia UPC BarcelonaTech, Dept Civil & Environm Engn, Jordi Girona 1-3,Edifici D2,Room D2-209, Barcelona 08034, Spain
来源
GEOTECHNICAL TESTING JOURNAL | 2017年 / 40卷 / 02期
关键词
desiccation cracks; auscultation; ground-penetrating radar;
D O I
10.1520/GTJ20160066
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper describes the capabilities of a novel technique to investigate crack formation and propagation in drying soils. The technique is a relatively simple, non-destructive indirect technique using a ground-penetrating-radar (GPR) system to detect cracks that form and propagate inside a soil specimen during desiccation. Although GPR devices have been used for multiple applications, their use in soils for the detection of small desiccation cracks has not been demonstrated yet. The experiment and the methodology used to test the accuracy of a small compact commercial GPR device for crack identification are described. The main objective was to identify what type of signals and what crack width and separation between them can be detected using the GPR device. The results indicate that cracks of 1 or 2mm wide can be detected depending on its position and shape, whereas sub-millimeter cracks are undetectable with the currently existing devices in the market. Regardless of this limitation, the GPR method can be useful to find time-related bounds of when the cracks appear, to point at their location and sometimes at the separation between two of them. Detection of cracks with origin at the bottom or within the specimen was accomplished with this system. Distances of 5 cm or more between cracks can be detected and measured, as well, with accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [12] 3D Modeling Beneath Ground: Plant Root Detection and Reconstruction Based on Ground-Penetrating Radar
    Lu, Yawen
    Lu, Guoyu
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 697 - 706
  • [13] Detecting vertical anomalies within loessial soils using ground-penetrating radar
    Freeland, RS
    Inman, DJ
    Yoder, RE
    Ammons, JT
    APPLIED ENGINEERING IN AGRICULTURE, 2002, 18 (02) : 263 - 264
  • [14] 3D MODELLING THE INVISIBLE USING GROUND PENETRATING RADAR
    Agrafiotis, P.
    Lampropoulos, K.
    Georgopoulos, A.
    Moropoulou, A.
    3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2017, 42-2 (W3): : 33 - 37
  • [15] Clutter Modeling for Ground-Penetrating Radar Measurements in Heterogeneous Soils
    Takahashi, Kazunori
    Igel, Jan
    Preetz, Holger
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (04) : 739 - 747
  • [16] Ballast evaluation using ground-penetrating radar
    Gallagher, Gerard
    Leiper, Quentin
    Clark, Maxwell
    Forde, Michael
    Railway Gazette International, 2000, 156 (02) : 101 - 102
  • [17] Automatic Classification of Pavement Distress Using 3D Ground-Penetrating Radar and Deep Convolutional Neural Network
    Liang, Xingmin
    Yu, Xin
    Chen, Chen
    Jin, Yong
    Huang, Jiandong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22269 - 22277
  • [18] 3D ground-penetrating radar imaging of ice complex deposits in northern East Siberia
    Schennen, Stephan
    Tronicke, Jens
    Wetterich, Sebastian
    Allroggen, Niklas
    Schwamborn, Georg
    Schirrmeister, Lutz
    GEOPHYSICS, 2016, 81 (01) : WA195 - WA202
  • [19] Facies analysis in the lower Greensand using ground-penetrating radar - Discussion
    Eyers, J
    Bristow, CS
    JOURNAL OF THE GEOLOGICAL SOCIETY, 1996, 153 : 334 - 336
  • [20] Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar
    Brosten, Troy R.
    Bradford, John H.
    McNamara, James P.
    Gooseff, Michael N.
    Zarnetske, Jay P.
    Bowden, William B.
    Johnston, Morgan E.
    JOURNAL OF HYDROLOGY, 2009, 373 (3-4) : 479 - 486