Numerical metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds

被引:19
|
作者
Larfors, Magdalena [1 ,2 ]
Lukas, Andre [3 ]
Ruehle, Fabian [4 ,5 ,6 ]
Schneider, Robin [2 ]
机构
[1] Univ Durham, Dept Math Sci, Upper Mountjoy Campus,Stockton Rd, Durham DH1 3LE, England
[2] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[3] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
[4] Northeastern Univ, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[6] NSF AI Inst Artificial Intelligence & Fundamental, Boston, MA USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 03期
基金
瑞典研究理事会;
关键词
metrics; Kreuzer-Skarke; Calabi-Yau; CICY; machine learning; string theory; VACUUM CONFIGURATIONS; PACKAGE;
D O I
10.1088/2632-2153/ac8e4e
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce neural networks (NNs) to compute numerical Ricci-flat Calabi-Yau (CY) metrics for complete intersection and Kreuzer-Skarke (KS) CY manifolds at any point in Kahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the NNs is carried out subject to a custom loss function. The Kahler class is fixed by adding to the loss a component which enforces the slopes of certain line bundles to match with topological computations. Our methods are applied to various manifolds, including the quintic manifold, the bi-cubic manifold and a KS manifold with Picard number two. We show that volumes and line bundle slopes can be reliably computed from the resulting Ricci-flat metrics. We also apply our results to compute an approximate Hermitian-Yang-Mills connection on a specific line bundle on the bi-cubic.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [32] Generalized Calabi-Yau manifolds
    Hitchin, N
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 281 - 308
  • [33] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [34] Numerical Calabi-Yau metrics from holomorphic networks
    Douglas, Michael R.
    Lakshminarasimhan, Subramanian
    Qi, Yidi
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 223 - +
  • [35] Complete Calabi-Yau metrics from Kahler metrics in D=4
    Leston, Mauricio
    Santillan, Osvaldo P.
    PHYSICAL REVIEW D, 2010, 82 (08):
  • [36] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [37] Convergence of Calabi-Yau manifolds
    Ruan, Wei-Dong
    Zhang, Yuguang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1543 - 1589
  • [38] All complete intersection Calabi-Yau four-folds
    Gray, James
    Haupt, Alexander S.
    Lukas, Andre
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [39] On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories
    Herbst, Manfred
    Walcher, Johannes
    MATHEMATISCHE ANNALEN, 2012, 353 (03) : 783 - 802
  • [40] Number of triple points on complete intersection Calabi-Yau threefolds
    Grzelakowski, Kacper
    ANNALES POLONICI MATHEMATICI, 2023, 131 (02) : 141 - 151