Numerical metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds

被引:19
|
作者
Larfors, Magdalena [1 ,2 ]
Lukas, Andre [3 ]
Ruehle, Fabian [4 ,5 ,6 ]
Schneider, Robin [2 ]
机构
[1] Univ Durham, Dept Math Sci, Upper Mountjoy Campus,Stockton Rd, Durham DH1 3LE, England
[2] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[3] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
[4] Northeastern Univ, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[6] NSF AI Inst Artificial Intelligence & Fundamental, Boston, MA USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 03期
基金
瑞典研究理事会;
关键词
metrics; Kreuzer-Skarke; Calabi-Yau; CICY; machine learning; string theory; VACUUM CONFIGURATIONS; PACKAGE;
D O I
10.1088/2632-2153/ac8e4e
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce neural networks (NNs) to compute numerical Ricci-flat Calabi-Yau (CY) metrics for complete intersection and Kreuzer-Skarke (KS) CY manifolds at any point in Kahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the NNs is carried out subject to a custom loss function. The Kahler class is fixed by adding to the loss a component which enforces the slopes of certain line bundles to match with topological computations. Our methods are applied to various manifolds, including the quintic manifold, the bi-cubic manifold and a KS manifold with Picard number two. We show that volumes and line bundle slopes can be reliably computed from the resulting Ricci-flat metrics. We also apply our results to compute an approximate Hermitian-Yang-Mills connection on a specific line bundle on the bi-cubic.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians
    Inoue, Daisuke
    Ito, Atsushi
    Miura, Makoto
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 677 - 703
  • [22] Flops for complete intersection Calabi-Yau threefolds
    Brodie, Callum
    Constantin, Andrei
    Lukas, Andre
    Ruehle, Fabian
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [23] Calabi-Yau metrics for quotients and complete intersections
    Braun, Volker
    Brelidze, Tamaz
    Douglas, Michael R.
    Ovrut, Burt A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [24] Numerical Weil-Petersson metrics on moduli spaces of Calabi-Yau manifolds
    Keller, Julien
    Lukic, Sergio
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 252 - 270
  • [25] Special Lagrangian torus fibrations of complete intersection Calabi-Yau manifolds: A geometric conjecture
    Morrison, David R.
    Plesser, M. Ronen
    NUCLEAR PHYSICS B, 2015, 898 : 751 - 770
  • [26] Completing the web of Z3-quotients of complete intersection Calabi-Yau manifolds
    Candelas, Philip
    Constantin, Andrei
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (04): : 345 - 369
  • [27] Rigid curves in complete intersection Calabi-Yau threefolds
    Kley, HP
    COMPOSITIO MATHEMATICA, 2000, 123 (02) : 185 - 208
  • [28] Calabi-Yau metrics on canonical bundles of complex flag manifolds
    Correa, Eder M.
    Grama, Lino
    JOURNAL OF ALGEBRA, 2019, 527 : 109 - 135
  • [29] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [30] Discrete Symmetries of Complete Intersection Calabi–Yau Manifolds
    Andre Lukas
    Challenger Mishra
    Communications in Mathematical Physics, 2020, 379 : 847 - 865