Consecutive primes and Beatty sequences

被引:1
|
作者
Banks, William D. [1 ]
Guo, Victor Z. [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
关键词
Primes; Beatty sequence; Consecutive; Heuristics; Hardy-Littlewood; SHORT INTERVALS;
D O I
10.1016/j.jnt.2018.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix irrational numbers alpha, alpha > 1 of finite type and real numbers beta,beta >= 0, and let B and B be the Beatty sequences B := ([alpha m + beta])(m is an element of N) and B := ([alpha m +beta])(m is an element of N). In this note, we study the distribution of pairs (p, p(#)) of consecutive primes for which p is an element of B and p(#) is an element of B. We conjecture that the estimate |{p <= x : p is an element of B and p# is an element of B}| = (alpha alpha)(-1)pi(x) + O(x(Iogx)(-3/2+epsilon)) holds for every fixed epsilon > 0, and we give a heuristic argument to support this prediction which relies (in part) on a strong form of the Hardy-Littlewood conjectures. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 174
页数:17
相关论文
共 50 条
  • [1] Primes in Intersections of Beatty Sequences
    Harman, Glyn
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (07)
  • [2] Gaps between primes in Beatty sequences
    Baker, Roger C.
    Zhao, Liangyi
    [J]. ACTA ARITHMETICA, 2016, 172 (03) : 207 - 242
  • [3] PRIMES IN BEATTY SEQUENCES IN SHORT INTERVALS
    Harman, Glyn
    [J]. MATHEMATIKA, 2016, 62 (02) : 572 - 586
  • [4] Consecutive quadratic residues in Beatty sequences
    Jing, Mengyao
    Liu, Huaning
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (05) : 1167 - 1189
  • [5] PIATETSKI-SHAPIRO PRIMES IN THE INTERSECTION OF MULTIPLE BEATTY SEQUENCES
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1375 - 1394
  • [6] Primes in Beatty sequence
    C G KARTHICK BABU
    [J]. Proceedings - Mathematical Sciences, 2021, 131
  • [7] Primes in Beatty sequence
    Babu, C. G. Karthick
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (01):
  • [8] Consecutive generalized r-free integers in Beatty sequences
    Srisopha, Sunanta
    Srichan, Teerapat
    Mavecha, Sukrawan
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [9] Consecutive generalized r-free integers in Beatty sequences
    Sunanta Srisopha
    Teerapat Srichan
    Sukrawan Mavecha
    [J]. Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [10] Primes with Beatty and Chebotarev conditions
    Ji, Caleb
    Kazdan, Joshua
    McDonald, Vaughan
    [J]. JOURNAL OF NUMBER THEORY, 2020, 216 : 307 - 334