Primes in Beatty sequence

被引:1
|
作者
Babu, C. G. Karthick [1 ]
机构
[1] Inst Math Sci, HBNI CIT Campus, Chennai 600113, Tamil Nadu, India
关键词
Beatty sequence; prime number; estimates on exponential sums;
D O I
10.1007/s12044-021-00604-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a polynomial g(x) of deg k >= 2 with integer coefficients and positive integer leading coefficient, we prove an upper bound for the least prime p such that g( p) is in non-homogeneous Beatty sequence {left perpendicular alpha n + beta right perpendicular: n = 1, 2, 3,...}, where alpha, beta is an element of R with alpha > 1 is irrational and we prove an asymptotic formula for the number of primes p such that g(p) = left perpendicular alpha n + beta right perpendicular. Next, we obtain an asymptotic formula for the number of primes p of the form p = left perpendicular alpha n + beta right perpendicular which also satisfies p equivalent to f (mod d), where f, d are integers with 1 <= f < d and ( f, d) = 1.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Primes in Beatty sequence
    C G KARTHICK BABU
    [J]. Proceedings - Mathematical Sciences, 2021, 131
  • [2] Piatetski-Shapiro primes in a Beatty sequence
    Guo, Victor Z.
    [J]. JOURNAL OF NUMBER THEORY, 2015, 156 : 317 - 330
  • [3] CARMICHAEL NUMBERS COMPOSED OF PRIMES FROM A BEATTY SEQUENCE
    Banks, William D.
    Yeager, Aaron M.
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 125 (01) : 129 - 137
  • [4] Representations of integers as sums of primes from a Beatty sequence
    Banks, William D.
    Guloglu, Ahmet M.
    Nevans, C. Wesley
    [J]. ACTA ARITHMETICA, 2007, 130 (03) : 255 - 275
  • [5] Primes in Intersections of Beatty Sequences
    Harman, Glyn
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (07)
  • [6] Consecutive primes and Beatty sequences
    Banks, William D.
    Guo, Victor Z.
    [J]. JOURNAL OF NUMBER THEORY, 2018, 191 : 158 - 174
  • [7] Primes with Beatty and Chebotarev conditions
    Ji, Caleb
    Kazdan, Joshua
    McDonald, Vaughan
    [J]. JOURNAL OF NUMBER THEORY, 2020, 216 : 307 - 334
  • [8] The ternary Goldbach–Vinogradov theorem with almost equal primes from the Beatty sequence
    Guangshi Lü
    Haiwei Sun
    [J]. The Ramanujan Journal, 2013, 30 : 153 - 161
  • [9] Beatty primes from fractional powers of almost-primes
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (06): : 1254 - 1270
  • [10] The general Goldbach problem with Beatty primes
    R. C. Vaughan
    [J]. The Ramanujan Journal, 2014, 34 : 347 - 359