PRIMES IN BEATTY SEQUENCES IN SHORT INTERVALS

被引:7
|
作者
Harman, Glyn [1 ]
机构
[1] Univ London, Royal Holloway, Egham TW20 0EX, Surrey, England
关键词
CONSECUTIVE PRIMES; THEOREM; DIFFERENCE;
D O I
10.1112/S0025579315000376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that sieve methods used previously to investigate primes in short intervals and corresponding Goldbach-type problems can be modified to obtain results on primes in Beatty sequences in short intervals.
引用
收藏
页码:572 / 586
页数:15
相关论文
共 50 条
  • [1] Primes in Intersections of Beatty Sequences
    Harman, Glyn
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (07)
  • [2] Consecutive primes and Beatty sequences
    Banks, William D.
    Guo, Victor Z.
    [J]. JOURNAL OF NUMBER THEORY, 2018, 191 : 158 - 174
  • [3] Gaps between primes in Beatty sequences
    Baker, Roger C.
    Zhao, Liangyi
    [J]. ACTA ARITHMETICA, 2016, 172 (03) : 207 - 242
  • [4] PRIMES IN SHORT INTERVALS
    HARMAN, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (03) : 335 - 348
  • [5] PRIMES IN SHORT INTERVALS
    IWANIEC, H
    JUTILA, M
    [J]. ARKIV FOR MATEMATIK, 1979, 17 (01): : 167 - 176
  • [6] PRIMES IN SHORT INTERVALS
    MAIER, H
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1985, 32 (02) : 221 - 225
  • [7] Primes in Short Intervals
    李红泽
    [J]. 数学进展, 1995, (01) : 84 - 84
  • [8] Primes in Short Intervals
    Hugh L. Montgomery
    K. Soundararajan
    [J]. Communications in Mathematical Physics, 2004, 252 : 589 - 617
  • [9] PRIMES IN SHORT INTERVALS
    IWANIEC, H
    PINTZ, J
    [J]. MONATSHEFTE FUR MATHEMATIK, 1984, 98 (02): : 115 - 143
  • [10] Primes in short intervals
    Li, HZ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 : 193 - 205