Multi-agent deep reinforcement learning with type-based hierarchical group communication

被引:12
|
作者
Jiang, Hao [1 ]
Shi, Dianxi [2 ,3 ]
Xue, Chao [2 ,3 ]
Wang, Yajie [1 ]
Wang, Gongju [2 ]
Zhang, Yongjun [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Peoples R China
[2] Natl Innovat Inst Def Technol, Artificial Intelligence Res Ctr, Beijing, Peoples R China
[3] Tianjin Artificial Intelligence Innovat Ctr, Tianjin, Peoples R China
基金
中国博士后科学基金;
关键词
Multi-agent reinforcement learning; Group cognitive consistency; Group communication; Value decomposition;
D O I
10.1007/s10489-020-02065-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world multi-agent tasks often involve varying types and quantities of agents. These agents connected by complex interaction relationships causes great difficulty for policy learning because they need to learn various interaction types to complete a given task. Therefore, simplifying the learning process is an important issue. In multi-agent systems, agents with a similar type often interact more with each other and exhibit behaviors more similar. That means there are stronger collaborations between these agents. Most existing multi-agent reinforcement learning (MARL) algorithms expect to learn the collaborative strategies of all agents directly in order to maximize the common rewards. This causes the difficulty of policy learning to increase exponentially as the number and types of agents increase. To address this problem, we propose a type-based hierarchical group communication (THGC) model. This model uses prior domain knowledge or predefine rule to group agents, and maintains the group's cognitive consistency through knowledge sharing. Subsequently, we introduce a group communication and value decomposition method to ensure cooperation between the various groups. Experiments demonstrate that our model outperforms state-of-the-art MARL methods on the widely adopted StarCraft II benchmarks across different scenarios, and also possesses potential value for large-scale real-world applications.
引用
收藏
页码:5793 / 5808
页数:16
相关论文
共 50 条
  • [21] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [22] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [23] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [24] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [25] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [26] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [27] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [28] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [29] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [30] Hierarchical reinforcement learning based on multi-agent cooperation game theory
    Tang H.
    Dong C.
    International Journal of Wireless and Mobile Computing, 2019, 16 (04): : 369 - 376