Random shuffling permutations of nudeotides

被引:0
|
作者
Wu, SQ [1 ]
Xun, G [1 ]
机构
[1] Iowa State Univ, Ctr Bioinformat & Biol Stat, Ames, IA 50011 USA
来源
6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIII, PROCEEDINGS: CONCEPTS AND APPLICATIONS OF SYSTEMICS, CYBERNETICS AND INFORMATICS III | 2002年
关键词
Sequence; r-let; frequency; random; Decomposition-and-Reassemble algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we discuss a shuffling sequence problem: Given a DNA sequence, we generate a random sequence that preserves the frequencies of all mononucleotides, dinucleotides, trinucleotides or softie high order base-compositions of the given sequence. Two quadratic running time algorithms, called Frequency-Counting algorithm and Decomposition-and-Reassemble algorithm, are presented for solving the problem. The first one is to count all frequencies of the mononucleotides, dinucteotides, trininucleotides, and any high order base-compositions in the given sequence. The second one is to generate a random DNA sequence that preserves the mononucleotides, dinucleotides, trinucleotides, or softie high order base-compositions. The two algorithms are implemented into a program ShuffleSeq (in C) arid is available at http://www.cs.iastate.edu/(similar to)sqwu/ShuffleSeq.html.
引用
收藏
页码:308 / 313
页数:6
相关论文
共 50 条
  • [21] THE GENERATION OF RANDOM PERMUTATIONS ON THE FLY
    BRASSARD, G
    KANNAN, S
    INFORMATION PROCESSING LETTERS, 1988, 28 (04) : 207 - 212
  • [22] A NOTE ON GENERATING RANDOM PERMUTATIONS
    PAGE, ES
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1967, 16 (03): : 273 - &
  • [23] RANDOM PERMUTATIONS WITH CYCLE WEIGHTS
    Betz, Volker
    Ueltschi, Daniel
    Velenik, Yvan
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 312 - 331
  • [24] Indifferentiability of Truncated Random Permutations
    Choi, Wonseok
    Lee, Byeonghak
    Lee, Jooyoung
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 175 - 195
  • [25] Cycles in Mallows random permutations
    He, Jimmy
    Mueller, Tobias
    Verstraaten, Teun W.
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 1054 - 1099
  • [26] REGENERATIVE RANDOM PERMUTATIONS OF INTEGERS
    Pitman, Jim
    Tang, Wenpin
    ANNALS OF PROBABILITY, 2019, 47 (03): : 1378 - 1416
  • [27] Increasing permutations of random processes
    Zhukova E.E.
    Journal of Mathematical Sciences, 1998, 88 (1) : 43 - 52
  • [28] CYCLIC STRUCTURE OF RANDOM PERMUTATIONS
    KOLCHIN, VF
    CHISTYAKOV, VP
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1139 - 1144
  • [29] Are random permutations spherically uniform?
    Perlman, Michael D.
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [30] Pattern avoidance for random permutations
    Crane, Harry
    DeSalvo, Stephen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 19 (02):