Automated chromosomes counting systems using deep neural network

被引:0
|
作者
Kang, Seungyoung [1 ]
Han, Junghun [1 ]
Chu, Yuseong [1 ]
Lee, Inkyung [2 ]
Joo, Haemi [2 ]
Yang, Sejung [1 ]
机构
[1] Yonsei Univ, Dept Biomed Engn, Wonju, South Korea
[2] Korea Hydro & Nucl Power, Radiat Hlth Inst, Seoul, South Korea
关键词
Deep Learning; Object detection; Chromosome;
D O I
10.1109/ICEIC54506.2022.9748307
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Karyotyping analysis is an important clinical process used in the process of diagnosing several genetic diseases by analyzing the number or shape of chromosomes. If the number of chromosomes is out of the normal range, it can cause hereditary diseases such as Down syndrome and Edward syndrome. In this study, we employed Faster R-CNN-based model for automated chromosome counting systems and showed a result of 0.914 in average precision [IoU = 0.75]. As a result, it was possible to count chromosomes by detecting each object with a high probability for independent and overlapping chromosomes.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals
    Oh, Shu Lih
    Vicnesh, Jahmunah
    Ciaccio, Edward J.
    Yuvaraj, Rajamanickam
    Acharya, U. Rajendra
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [42] A deep convolutional neural network for automated vestibular disorder classification using VNG analysis
    Ben Slama, Amine
    Mouelhi, Aymen
    Sahli, Hanene
    Zeraii, Abderrazek
    Marrakchi, Jihene
    Trabelsi, Hedi
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2020, 8 (03): : 334 - 342
  • [43] Automated detection of anterior cruciate ligament tears using a deep convolutional neural network
    Yusuke Minamoto
    Ryuichiro Akagi
    Satoshi Maki
    Yuki Shiko
    Ryosuke Tozawa
    Seiji Kimura
    Satoshi Yamaguchi
    Yohei Kawasaki
    Seiji Ohtori
    Takahisa Sasho
    BMC Musculoskeletal Disorders, 23
  • [44] Deep neural network technique for automated detection of ADHD and CD using ECG signal
    Loh, Hui Wen
    Ooi, Chui Ping
    Oh, Shu Lih
    Barua, Prabal Datta
    Tan, Yi Ren
    Molinari, Filippo
    March, Sonja
    Acharya, U. Rajendra
    Fung, Daniel Shuen Sheng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 241
  • [45] Automated detection of early-stage ROP using a deep convolutional neural network
    Huang, Yo-Ping
    Basanta, Haobijam
    Kang, Eugene Yu-Chuan
    Chen, Kuan-Jen
    Hwang, Yih-Shiou
    Lai, Chi-Chun
    Campbell, John P.
    Chiang, Michael F.
    Chan, Robison Vernon Paul
    Kusaka, Shunji
    Fukushima, Yoko
    Wu, Wei-Chi
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (08) : 1099 - 1103
  • [46] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Chhabra, Megha
    Ravulakollu, Kiran Kumar
    Kumar, Manoj
    Sharma, Abhay
    Nayyar, Anand
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6471 - 6497
  • [47] Automated detection of anterior cruciate ligament tears using a deep convolutional neural network
    Minamoto, Yusuke
    Akagi, Ryuichiro
    Maki, Satoshi
    Shiko, Yuki
    Tozawa, Ryosuke
    Kimura, Seiji
    Yamaguchi, Satoshi
    Kawasaki, Yohei
    Ohtori, Seiji
    Sasho, Takahisa
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [48] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [49] Refinement of spectra using a deep neural network: Fully automated removal of noise and background
    Gebrekidan, Medhanie Tesfay
    Knipfer, Christian
    Braeuer, Andreas Siegfried
    JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (03) : 723 - 736
  • [50] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Megha Chhabra
    Kiran Kumar Ravulakollu
    Manoj Kumar
    Abhay Sharma
    Anand Nayyar
    Neural Computing and Applications, 2023, 35 : 6471 - 6497