Automated chromosomes counting systems using deep neural network

被引:0
|
作者
Kang, Seungyoung [1 ]
Han, Junghun [1 ]
Chu, Yuseong [1 ]
Lee, Inkyung [2 ]
Joo, Haemi [2 ]
Yang, Sejung [1 ]
机构
[1] Yonsei Univ, Dept Biomed Engn, Wonju, South Korea
[2] Korea Hydro & Nucl Power, Radiat Hlth Inst, Seoul, South Korea
关键词
Deep Learning; Object detection; Chromosome;
D O I
10.1109/ICEIC54506.2022.9748307
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Karyotyping analysis is an important clinical process used in the process of diagnosing several genetic diseases by analyzing the number or shape of chromosomes. If the number of chromosomes is out of the normal range, it can cause hereditary diseases such as Down syndrome and Edward syndrome. In this study, we employed Faster R-CNN-based model for automated chromosome counting systems and showed a result of 0.914 in average precision [IoU = 0.75]. As a result, it was possible to count chromosomes by detecting each object with a high probability for independent and overlapping chromosomes.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Automated Data-Processing Function Identification Using Deep Neural Network
    Kuang, Hongyu
    Wang, Jian
    Li, Ruilin
    Feng, Chao
    Zhang, Xing
    IEEE ACCESS, 2020, 8 : 55411 - 55423
  • [32] Automated retinopathy of prematurity screening using deep neural network with attention mechanism
    Peng, Yuanyuan
    Zhu, Weifang
    Chen, Feng
    Xiang, Daoman
    Chen, Xinjian
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [33] ASRTest: Automated Testing for Deep-Neural-Network-Driven Speech Recognition Systems
    Ji, Pin
    Feng, Yang
    Liu, Jia
    Zhao, Zhihong
    Chen, Zhenyu
    PROCEEDINGS OF THE 31ST ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, ISSTA 2022, 2022, : 189 - 201
  • [34] CentroidNet: A Deep Neural Network for Joint Object Localization and Counting
    Dijkstra, K.
    van de Loosdrecht, J.
    Schomaker, L. R. B.
    Wiering, M. A.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 585 - 601
  • [35] Automated semantic lung segmentation in chest CT images using deep neural network
    Murugappan, M.
    Bourisly, Ali K. K.
    Prakash, N. B.
    Sumithra, M. G.
    Acharya, U. Rajendra
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (21): : 15343 - 15364
  • [36] Automated semantic lung segmentation in chest CT images using deep neural network
    M. Murugappan
    Ali K. Bourisly
    N. B. Prakash
    M. G. Sumithra
    U. Rajendra Acharya
    Neural Computing and Applications, 2023, 35 : 15343 - 15364
  • [37] Automated brainstem parcellation using multi-atlas segmentation and deep neural network
    Magnusson, Magnus
    Love, Askell
    Ellingsen, Lotta M.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [38] Automated Object Tracing for Biomedical Image Segmentation Using a Deep Convolutional Neural Network
    Rutter, Erica M.
    Lagergren, John H.
    Flores, Kevin B.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 686 - 694
  • [39] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [40] Automated EEG-based screening of depression using deep convolutional neural network
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    Subha, D. P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 : 103 - 113