A conservative stable finite element method for Stokes flow and nearly incompressible linear elasticity on rectangular grid

被引:2
|
作者
Chen, Yuyan [1 ]
Zhang, Shuo [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, LSEC,ICMSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Incompressible Stokes problem; Nearly incompressible linear elasticity problem; Stable finite element; Conservative; LEAST-SQUARES METHODS; CONFORMING B-SPLINES; MASS CONSERVATION; SCOTT-VOGELIUS; OSEEN PROBLEM; FREE GALERKIN; FLUID-FLOW; EQUATIONS; LOCKING; APPROXIMATIONS;
D O I
10.1016/j.cam.2017.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss finite element methods for the incompressible Stokes problem and the nearly incompressible linear elasticity problem. Specifically, we present a finite element pair for the incompressible Stokes problem, which satisfies the discrete inf-sup condition and the discrete Korn's inequality, and moreover, which is element-wise conservative. The pair provides a locking-free method for the nearly incompressible linear elasticity problem without reduced integration. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条
  • [41] Stress-hybrid virtual element method on quadrilateral meshes for compressible and nearly-incompressible linear elasticity
    Chen, Alvin
    Sukumar, N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (03)
  • [42] Linear stability of incompressible fluid flow in a cavity using finite element method
    Ding, Y
    Kawahara, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1998, 27 : 139 - 157
  • [43] A finite-element coarse-grid projection method for incompressible flow simulations
    Kashefi, Ali
    Staples, Anne E.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1063 - 1090
  • [44] A finite-element coarse-grid projection method for incompressible flow simulations
    Ali Kashefi
    Anne E. Staples
    Advances in Computational Mathematics, 2018, 44 : 1063 - 1090
  • [45] A NEW FAMILY OF STABLE ELEMENTS FOR NEARLY INCOMPRESSIBLE ELASTICITY BASED ON A MIXED PETROV-GALERKIN FINITE-ELEMENT FORMULATION
    FRANCA, LP
    HUGHES, TJR
    LOULA, AFD
    MIRANDA, I
    NUMERISCHE MATHEMATIK, 1988, 53 (1-2) : 123 - 141
  • [46] An isogeometric method for linear nearly-incompressible elasticity with local stress projection
    Antolin, Pablo
    Bressan, Andrea
    Buffa, Annalisa
    Sangalli, Giancarlo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 694 - 719
  • [47] Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
    Zhou, AH
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 401 - 411
  • [48] Immersed finite element method for rigid body motions in the incompressible Navier-Stokes flow
    Lee, Tae-Rin
    Chang, Yoon-Suk
    Choi, Jae-Boong
    Kim, Do Wan
    Liu, Wing Kam
    Kim, Young-Jin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (25-28) : 2305 - 2316
  • [49] Matrix-Free Higher-Order Finite Element Method for Parallel Simulation of Compressible and Nearly-Incompressible Linear Elasticity on Unstructured Meshes
    Mehraban, Arash
    Tufo, Henry
    Sture, Stein
    Regueiro, Richard
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (03): : 1283 - 1303
  • [50] ENERGY STABLE AND MOMENTUM CONSERVING HYBRID FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Labeur, Robert Jan
    Wells, Garth N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A889 - A913