Coloring random graphs

被引:137
|
作者
Mulet, R
Pagnani, A
Weigt, M
Zecchina, R
机构
[1] Abdus Salaam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] Univ Havana, Henri Poincare Chair Complex Syst, Havana 10400, Cuba
[3] Univ Havana, Supoerconduct Lab, Fac Phys, IMRE, Havana 10400, Cuba
[4] Univ Roma La Sapienza, Dipartimento Fis, INFM, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, SMC, I-00185 Rome, Italy
[6] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
关键词
D O I
10.1103/PhysRevLett.89.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the graph coloring problem over random graphs of finite average connectivity c. Given a number q of available colors, we find that graphs with low connectivity admit almost always a proper coloring, whereas graphs with high connectivity are uncolorable. Depending on q, we find the precise value of the critical average connectivity c(q). Moreover, we show that below c(q) there exists a clustering phase cis an element of[c(d),c(q)] in which ground states spontaneously divide into an exponential number of clusters and where the proliferation of metastable states is responsible for the onset of complexity in local search algorithms.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Algorithms for coloring semi-random graphs
    Subramanian, CR
    Furer, M
    Madhavan, CEV
    RANDOM STRUCTURES & ALGORITHMS, 1998, 13 (02) : 125 - 158
  • [22] Effect of quantum fluctuations on the coloring of random graphs
    Bapst, Victor
    Semerjian, Guilhem
    Zamponi, Francesco
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [23] FAST PARALLEL ALGORITHMS FOR COLORING RANDOM GRAPHS
    KEDEM, ZM
    PALEM, KV
    PANTZIOU, GE
    SPIRAKIS, PG
    ZAROLIAGIS, CD
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 135 - 147
  • [24] COLORING RANDOM INTERSECTION GRAPHS AND COMPLEX NETWORKS
    Behrisch, Michael
    Taraz, Anusch
    Ueckerdt, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 288 - 299
  • [25] Coloring random graphs and maximizing local diversity
    Bounkong, S.
    van Mourik, J.
    Saad, D.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [26] On-line coloring of sparse random graphs and random trees
    Pittel, B
    Weishaar, RS
    JOURNAL OF ALGORITHMS, 1997, 23 (01) : 195 - 205
  • [27] COLORING RANDOM AND SEMI-RANDOM K-COLORABLE GRAPHS
    BLUM, A
    SPENCER, J
    JOURNAL OF ALGORITHMS, 1995, 19 (02) : 204 - 234
  • [28] Coloring complete bipartite graphs from random lists
    Krivelevich, Michael
    Nachmias, Asaf
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (04) : 436 - 449
  • [29] Coloring graphs from random lists of size 2
    Casselgren, Carl Johan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 168 - 181
  • [30] ONLINE VERTEX-COLORING GAMES IN RANDOM GRAPHS
    Marciniszyn, Martin
    Spoehel, Reto
    COMBINATORICA, 2010, 30 (01) : 105 - 123