Coloring complete bipartite graphs from random lists

被引:15
|
作者
Krivelevich, Michael [1 ]
Nachmias, Asaf [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1002/rsa.20114
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let K-n,K-n be the complete bipartite graph with n vertices in each side. For each vertex draw uniformly at random a list of size k from a base set S of size s = s(n). In this paper we estimate the asymptotic probability of the existence of a proper coloring from the random lists for all fixed values of k and growing n. We show that this property exhibits a sharp threshold for k >= 2 and the location of the threshold is precisely s(n) = 2n for k = 2 and approximately s(n) = 2(k-1) In 2/n for k >= 3. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:436 / 449
页数:14
相关论文
共 50 条