Hydrogen production on iron-magnesium oxide in the high-temperature water-gas shift reaction

被引:18
|
作者
Boudjemaa, Amel [1 ,2 ]
Auroux, Aline [3 ]
Boumaza, Souhila [1 ,2 ]
Trari, Mohamed [1 ,2 ]
Cherifi, Ouiza [1 ,2 ]
Bouarab, Rabah [1 ,2 ]
机构
[1] USTHB, Fac Chim, Lab CGN, Algiers, Algeria
[2] USTHB, Fac Chim, Lab LSVER, Algiers, Algeria
[3] UCB Lyon1, CNRS, UMR 5256, Inst Rech Catalyse & Environm Lyon, F-69626 Villeurbanne, France
来源
关键词
H-2; production; WGS Reaction; Fe-Cr; Fe-Mg; CATALYSTS;
D O I
10.1007/s11144-009-0084-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-Cr-O and Fe-Mg-O catalysts were used for hydrogen production via the water-gas shift reaction. Fe-Cr-O catalysts were synthesized by different methods such as co-precipitation, impregnation and substitution technique. Catalysts were characterized by XRD, TG, BET and TPR. Addition of Mg improved the catalytic activity of Fe-O by favouring the development of small and well dispersed Fe particles (MgFe2O4). As a consequence, MgO prevented iron phase sintering in the presence of a large amount of water in the WGS reaction.
引用
收藏
页码:319 / 325
页数:7
相关论文
共 50 条
  • [31] Electronic metal-oxide support interactions and the production of hydrogen through the water-gas shift reaction
    Rodriguez, Jose A.
    Senanayake, Sanjaya D.
    Stacchiola, Dario
    Liu, Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [32] Stationary and transient kinetics of the high temperature water-gas shift reaction
    Keiski, RL
    Salmi, T
    Niemisto, P
    Ainassaari, J
    Pohjola, VJ
    APPLIED CATALYSIS A-GENERAL, 1996, 137 (02) : 349 - 370
  • [33] Substituting Chromium in Iron-Based Catalysts for the High- Temperature Water-Gas Shift Reaction
    Ariens, M., I
    van de Water, L. G. A.
    Dugulan, A., I
    Bruck, E.
    Hensen, E. J. M.
    ACS CATALYSIS, 2022, 12 (22): : 13838 - 13852
  • [34] The carbon-supported iron catalyst for a high-temperature water gas shift reaction
    Jedynak, A
    Kowalczyk, Z
    Sentek, J
    Stolecki, K
    Pielaszek, J
    PRZEMYSL CHEMICZNY, 2001, 80 (09): : 398 - 402
  • [35] An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction
    Khoshooei, Milad Ahmadi
    Wang, Xijun
    Vitale, Gerardo
    Formalik, Filip
    Kirlikovali, Kent O.
    Snurr, Randall Q.
    Pereira-Almao, Pedro
    Farha, Omar K.
    SCIENCE, 2024, 384 (6695) : 540 - 546
  • [36] Synthesis of Ni-FeCeO2 by mechanochemical method for high-temperature water-gas shift reaction
    Ghazimahaleh, Meysam Nezhadhassan
    Rezaei, Mehran
    Alavi, Seyed Mehdi
    Akbari, Ehsan
    Varbar, Mohammad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 682 - 692
  • [37] Volcano-Shaped Correlation Dictated Superior Activity for Ultralow Al-Doped Iron Oxide toward High-Temperature Water-Gas Shift Reaction
    Qian, Binbin
    Yan, Xue
    Yang, Sasha
    Zhang, Jianghao
    Liu, Cheng
    Liu, Zongtang
    Fei, Zhenghao
    Dai, Baiqian
    Liu, Jefferson Zhe
    Wang, Yong
    Zhang, Lian
    ACS CATALYSIS, 2024, 14 (10): : 7402 - 7415
  • [38] Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction
    Hua, JM
    Wei, KM
    Zheng, Q
    Lin, XY
    APPLIED CATALYSIS A-GENERAL, 2004, 259 (01) : 121 - 130
  • [39] Photocatalytic water-gas shift reaction at ambient temperature
    Millard, L
    Bowker, M
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 148 (1-3) : 91 - 95
  • [40] Hydrogen production by the water-gas shift reaction: A comprehensive review on catalysts, kinetics, and reaction mechanism
    Dehimi, Leila
    Alioui, Oualid
    Benguerba, Yacine
    Yadav, Krishna Kumar
    Bhutto, Javed Khan
    Fallatah, Ahmed M.
    Shukla, Tanuj
    Alreshidi, Maha Awjan
    Balsamo, Marco
    Badawi, Michael
    Erto, Alessandro
    FUEL PROCESSING TECHNOLOGY, 2025, 267