An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction

被引:5
|
作者
Khoshooei, Milad Ahmadi [1 ,2 ,3 ]
Wang, Xijun [4 ]
Vitale, Gerardo [3 ,6 ]
Formalik, Filip [4 ,5 ]
Kirlikovali, Kent O. [1 ,2 ]
Snurr, Randall Q. [4 ]
Pereira-Almao, Pedro [3 ,6 ]
Farha, Omar K. [1 ,2 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[4] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[5] Wroclaw Univ Sci & Technol, Fac Chem, Dept Micro Nano & Bioproc Engn, PL-50370 Wroclaw, Poland
[6] Nanos Technol & Innovat Nanostech, Calgary, AB T2A 6J4, Canada
关键词
FINDING SADDLE-POINTS; CO2; HYDROGENATION; REDUCTION; METHANOL; TRANSFORMATION; ADSORPTION; METALS;
D O I
10.1126/science.adl1260
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although technologically promising, the reduction of carbon dioxide (CO2) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (alpha-Mo2C), prepared through a facile and scalable route, offers 100% selectivity for CO2 reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600 degrees C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-Mo2C interactions, and interstitial oxygen atoms, respectively. Mechanistic studies and density functional theory (DFT) calculations provided evidence that the reaction proceeds through an H-2-aided redox mechanism.
引用
收藏
页码:540 / 546
页数:7
相关论文
共 50 条
  • [1] Novel phosphorus-doped molybdenum carbide catalyst for the reverse water-gas shift reaction
    Shi, Xiaofeng
    Wang, Zhimeng
    Rong, Qingshan
    Cao, Kexin
    Shi, Yan
    Yao, Zhiwei
    [J]. PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2024, 199 (05) : 377 - 382
  • [2] High-temperature kinetics of the homogeneous reverse water-gas shift reaction
    Bustamante, F
    Enick, RM
    Cugini, AV
    Killmeyer, RP
    Howard, BH
    Rothenberger, KS
    Ciocco, MV
    Morreale, BD
    [J]. AICHE JOURNAL, 2004, 50 (05) : 1028 - 1041
  • [3] Low-temperature water-gas shift reaction over cobalt-molybdenum carbide catalyst
    Nagai, M
    Matsuda, K
    [J]. JOURNAL OF CATALYSIS, 2006, 238 (02) : 489 - 496
  • [4] Optimization of Potassium Promoted Molybdenum Carbide Catalyst for the Low Temperature Reverse Water Gas Shift Reaction
    Morse, James R.
    Holder, Cameron F.
    Baldwin, Jeffrey W.
    Willauer, Heather D.
    [J]. ENERGIES, 2022, 15 (19)
  • [5] WATER-GAS SHIFT REACTION ON A COBALT MOLYBDENUM OXIDE CATALYST
    HAKKARAINEN, R
    SALMI, T
    KEISKI, RL
    [J]. APPLIED CATALYSIS A-GENERAL, 1993, 99 (02) : 195 - 215
  • [6] Highly Active and Stable Bimetallic Nickel-Copper Core-Ceria Shell Catalyst for High-Temperature Water-Gas Shift Reaction
    Saw, Eng Toon
    Oemar, Usman
    Ang, Ming Li
    Hidajat, Kus
    Kawi, Sibudjing
    [J]. CHEMCATCHEM, 2015, 7 (20) : 3358 - 3367
  • [7] Mechanism investigation and catalyst screening of high-temperature reverse water gas shift reaction
    Yanying Qi
    Yi-An Zhu
    De Chen
    [J]. Green Chemical Engineering, 2020, 1 (02) : 131 - 139
  • [8] Reverse water gas shift reaction over molybdenum carbide
    Nagai, M
    Kurakami, T
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2005, 38 (10) : 807 - 812
  • [9] Mechanism investigation and catalyst screening of high-temperature reverse water gas shift reaction
    Qi, Yanying
    Zhu, Yi-An
    Chen, De
    [J]. GREEN CHEMICAL ENGINEERING, 2020, 1 (02) : 131 - 139
  • [10] Molybdenum carbide catalysts for water-gas shift
    Patt, J
    Moon, DJ
    Phillips, C
    Thompson, L
    [J]. CATALYSIS LETTERS, 2000, 65 (04) : 193 - 195