An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction

被引:5
|
作者
Khoshooei, Milad Ahmadi [1 ,2 ,3 ]
Wang, Xijun [4 ]
Vitale, Gerardo [3 ,6 ]
Formalik, Filip [4 ,5 ]
Kirlikovali, Kent O. [1 ,2 ]
Snurr, Randall Q. [4 ]
Pereira-Almao, Pedro [3 ,6 ]
Farha, Omar K. [1 ,2 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[4] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[5] Wroclaw Univ Sci & Technol, Fac Chem, Dept Micro Nano & Bioproc Engn, PL-50370 Wroclaw, Poland
[6] Nanos Technol & Innovat Nanostech, Calgary, AB T2A 6J4, Canada
关键词
FINDING SADDLE-POINTS; CO2; HYDROGENATION; REDUCTION; METHANOL; TRANSFORMATION; ADSORPTION; METALS;
D O I
10.1126/science.adl1260
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although technologically promising, the reduction of carbon dioxide (CO2) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (alpha-Mo2C), prepared through a facile and scalable route, offers 100% selectivity for CO2 reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600 degrees C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-Mo2C interactions, and interstitial oxygen atoms, respectively. Mechanistic studies and density functional theory (DFT) calculations provided evidence that the reaction proceeds through an H-2-aided redox mechanism.
引用
收藏
页码:540 / 546
页数:7
相关论文
共 50 条
  • [21] Reverse water-gas shift reaction: steady state isotope switching study of the reverse water-gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst
    Jacobs, G
    Davis, BH
    [J]. APPLIED CATALYSIS A-GENERAL, 2005, 284 (1-2) : 31 - 38
  • [22] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ying Ma
    Zhanglong Guo
    Qian Jiang
    Kuang-Hsu Wu
    Huimin Gong
    Yuefeng Liu
    [J]. Journal of Energy Chemistry, 2020, 50 (11) : 37 - 43
  • [23] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ma, Ying
    Guo, Zhanglong
    Jiang, Qian
    Wu, Kuang-Hsu
    Gong, Huimin
    Liu, Yuefeng
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2020, 50 (50) : 37 - 43
  • [25] Molybdenum carbide water-gas shift catalyst for fuel cell-powered vehicles applications
    Moon, DJ
    Ryu, JW
    [J]. CATALYSIS LETTERS, 2004, 92 (1-2) : 17 - 24
  • [26] Hydrogen production on iron–magnesium oxide in the high-temperature water-gas shift reaction
    Amel Boudjemaa
    Aline Auroux
    Souhila Boumaza
    Mohamed Trari
    Ouiza Cherifi
    Rabah Bouarab
    [J]. Reaction Kinetics and Catalysis Letters, 2009, 98 : 319 - 325
  • [27] Temperature-programmed reduction and oxidation of tungsten carbide catalyst for low-temperature water-gas shift reaction
    Nagai, Masatoshi
    Kakinuma, Tsutomu
    Matsuda, Kenji
    [J]. JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2007, 10 (04) : 217 - 220
  • [28] Assessing high-temperature water-gas shift membrane reactors
    Ma, DH
    Lund, CRF
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (04) : 711 - 717
  • [29] Partially sintered copper-ceria as excellent catalyst for the high-temperature reverse water gas shift reaction
    Liu, Hao-Xin
    Li, Shan-Qing
    Wang, Wei-Wei
    Yu, Wen-Zhu
    Zhang, Wu-Jun
    Ma, Chao
    Jia, Chun-Jiang
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [30] Kinetic study of high temperature water-gas shift reaction over LB type catalyst
    Li, JW
    Bai, JY
    Yao, F
    Li, CY
    [J]. CHINESE JOURNAL OF CATALYSIS, 2005, 26 (01) : 25 - 31