Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras

被引:0
|
作者
Karlovich, Alexei Yu. [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Toeplitz matrix; generalized Krein algebra; Szego-Widom limit theorem; Wiener-Hopf factorization; BEHAVIOR;
D O I
10.1007/978-3-7643-9919-1_21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha,beta is an element of (0,1) and K-alpha,K-beta := {a is an element of L-infinity(T): Sigma(infinity)(k=1) vertical bar(a) over cap(-k)vertical bar(2)k(2 alpha) < infinity, Sigma(infinity)(k=1) vertical bar(a) over cap (k)vertical bar(2)k(2 beta) < infinity}. Mark Krein proved in 1966 that K-1/2,K-1/2 forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended earlier results of Gabor Szego for scalar symbols and established the asymptotic trace formula trace f(T-n(a)) = (n+1)G(f)(a) + E-f(a) + o(1) as n ->infinity for finite Toeplitz matrices T-n(a) with matrix symbols a is an element of K-NXN(1/2,1/2). We show that if alpha + beta >= 1 and a is an element of K-NXN(alpha,beta), then the Szego-Widom asymptotic trace formula holds with o(1) replaced by o(n(1-alpha-beta)).
引用
收藏
页码:341 / 359
页数:19
相关论文
共 50 条
  • [41] On the singular values of generalized Toeplitz matrices
    Shao, B
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 49 (02) : 239 - 254
  • [42] Generalized inversion of block Toeplitz matrices
    Adukov, VM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 274 : 85 - 124
  • [43] Algebras of block Toeplitz matrices with commuting entries
    Khan, Muhammad Ahsan
    Timotin, Dan
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2702 - 2716
  • [44] On some properties of Toeplitz matrices
    Kucerovsky, Dan
    Mousavand, Kaveh
    Sarraf, Aydin
    COGENT MATHEMATICS, 2016, 3
  • [45] Multilevel Toeplitz matrices and approximation by matrix algebras
    Capizzano, SS
    Tyrtyshnikov, E
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VIII, 1998, 3461 : 393 - 404
  • [46] A Family of Maximal Algebras of Block Toeplitz Matrices
    Khan, Muhammad Ahsan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 127 - 141
  • [47] ON ALGEBRAS OF TOEPLITZ PLUS HANKEL-MATRICES
    BEVILACQUA, R
    BONANNI, N
    BOZZO, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 99 - 118
  • [48] Asymptotic generalized eigenvalue distribution of Toeplitz block toeplitz matrices
    Oudin, M.
    Delmas, J. P.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3309 - 3312
  • [49] Toeplitz determinants, Fisher-Hartwig symbols, and random matrices
    Basor, Estelle L.
    RECENT PERSPECTIVES IN RANDOM MATRIX THEORY AND NUMBER THEORY, 2005, 322 : 309 - 336
  • [50] Asymptotics for the eigenvalues of Toeplitz matrices with a symbol having a power singularity
    Bogoya, Manuel
    Grudsky, Sergei M. M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (05)