Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras

被引:0
|
作者
Karlovich, Alexei Yu. [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Toeplitz matrix; generalized Krein algebra; Szego-Widom limit theorem; Wiener-Hopf factorization; BEHAVIOR;
D O I
10.1007/978-3-7643-9919-1_21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha,beta is an element of (0,1) and K-alpha,K-beta := {a is an element of L-infinity(T): Sigma(infinity)(k=1) vertical bar(a) over cap(-k)vertical bar(2)k(2 alpha) < infinity, Sigma(infinity)(k=1) vertical bar(a) over cap (k)vertical bar(2)k(2 beta) < infinity}. Mark Krein proved in 1966 that K-1/2,K-1/2 forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended earlier results of Gabor Szego for scalar symbols and established the asymptotic trace formula trace f(T-n(a)) = (n+1)G(f)(a) + E-f(a) + o(1) as n ->infinity for finite Toeplitz matrices T-n(a) with matrix symbols a is an element of K-NXN(1/2,1/2). We show that if alpha + beta >= 1 and a is an element of K-NXN(alpha,beta), then the Szego-Widom asymptotic trace formula holds with o(1) replaced by o(n(1-alpha-beta)).
引用
收藏
页码:341 / 359
页数:19
相关论文
共 50 条
  • [31] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    Batalshchikov, A.
    Grudsky, S.
    Ramirez de Arellano, E.
    Stukopin, V.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 301 - 330
  • [32] On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices
    Voronin, I. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (06) : 1159 - 1166
  • [33] On the asymptotics of all eigenvalues of Hermitian Toeplitz band matrices
    A. Böttcher
    S. M. Grudsky
    E. A. Maksimenko
    Doklady Mathematics, 2009, 80 : 662 - 664
  • [34] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    A. Batalshchikov
    S. Grudsky
    E. Ramírez de Arellano
    V. Stukopin
    Integral Equations and Operator Theory, 2015, 83 : 301 - 330
  • [35] Spectral asymptotics for Toeplitz operators and an application to banded matrices
    Pushnitski, Alexander
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 397 - 412
  • [36] GENERALIZED COPRIME SAMPLING OF TOEPLITZ MATRICES
    Qin, Si
    Zhang, Yimin D.
    Amin, Moeness G.
    Zoubir, Abdelhak
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4468 - 4472
  • [37] GENERALIZED PASCAL TRIANGLES AND TOEPLITZ MATRICES
    Moghaddamfar, A. R.
    Pooya, S. M. H.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 564 - 588
  • [38] Generalized inversion of block Toeplitz matrices
    Linear Algebra and Its Applications, 1998, 274 : 85 - 124
  • [39] GENERALIZED INVERTIBILITY OF HANKEL AND TOEPLITZ MATRICES
    GOUVEIA, MC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 193 : 95 - 106
  • [40] On the Singular Values of Generalized Toeplitz Matrices
    Bin Shao
    Integral Equations and Operator Theory, 2004, 49 : 239 - 254