Space from Hilbert space: Recovering geometry from bulk entanglement

被引:104
|
作者
Cao, ChunJun [1 ]
Carroll, Sean M. [1 ]
Michalakis, Spyridon [1 ,2 ]
机构
[1] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
关键词
ENTROPY; GAP;
D O I
10.1103/PhysRevD.95.024031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine how to construct a spatial manifold and its geometry from the entanglement structure of an abstract quantum state in Hilbert space. Given a decomposition of Hilbert space H into a tensor product of factors, we consider a class of "redundancy-constrained states" in H that generalize the area-law behavior for entanglement entropy usually found in condensed-matter systems with gapped local Hamiltonians. Using mutual information to define a distance measure on the graph, we employ classical multidimensional scaling to extract the best-fit spatial dimensionality of the emergent geometry. We then show that entanglement perturbations on such emergent geometries naturally give rise to local modifications of spatial curvature which obey a (spatial) analog of Einstein's equation. The Hilbert space corresponding to a region of flat space is finite-dimensional and scales as the volume, though the entropy (and the maximum change thereof) scales like the area of the boundary. Aversion of the ER = EPR conjecture is recovered, in that perturbations that entangle distant parts of the emergent geometry generate a configuration that may be considered as a highly quantum wormhole.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Hilbert Space Geometry of Random Matrix Eigenstates
    Penner, Alexander-Georg
    von Oppen, Felix
    Zarand, Gergely
    Zirnbauer, Martin R.
    PHYSICAL REVIEW LETTERS, 2021, 126 (20)
  • [22] METRIC GEOMETRY OF IDEALS OF OPERATORS ON HILBERT SPACE
    HOLUB, JR
    MATHEMATISCHE ANNALEN, 1973, 201 (02) : 157 - 163
  • [23] Entanglement transition through Hilbert-space localization
    Liu, Quancheng
    Ziegler, Klaus
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [24] Back and forth from Fock space to Hilbert space: a guide for commuters
    Beggi, Andrea
    Siloi, Ilaria
    Benedetti, Claudia
    Piccinini, Enrico
    Razzoli, Luca
    Bordone, Paolo
    Paris, Matteo G. A.
    EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (06)
  • [25] Vertical integration from the large Hilbert space
    Erler, Theodore
    Konopka, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [26] Vertical integration from the large Hilbert space
    Theodore Erler
    Sebastian Konopka
    Journal of High Energy Physics, 2017
  • [27] Minimal scales from an extended Hilbert space
    Kober, Martin
    Nicolini, Piero
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (24)
  • [28] Shape from shadows - A Hilbert space setting
    Hatzitheodorou, M
    JOURNAL OF COMPLEXITY, 1998, 14 (01) : 63 - 84
  • [29] Entanglement entropy from the truncated conformal space
    Palmai, T.
    PHYSICS LETTERS B, 2016, 759 : 439 - 445
  • [30] Dimensional reduction from entanglement in Minkowski space
    Brustein, R
    Yarom, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (01):