Troposcatter transmission loss prediction based on particle swarm optimisation

被引:3
|
作者
Yuan, Dizhe [1 ]
Chen, Xihong [1 ]
机构
[1] Air Force Engn Univ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Coherent scattering - Transmissions - Frequency bands - Wave transmission - Climate models - Particle swarm optimization (PSO);
D O I
10.1049/mia2.12052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tropospheric scatter is a promising method for over-the-horizon propagation. Transmission loss caused by the three mainstream troposcatter mechanisms is analysed, namely turbulent incoherent scattering theory, coherent reflection by stable layers theory, and incoherent reflection by irregular layers theory. Then an experiment is conducted to explore the relationships among the three mechanisms. Based on this experiment, the troposcatter transmission loss prediction model is established in different climate zones by a particle swarm optimisation algorithm and experimental data from the global troposcatter databank. The simulation shows that this model is more effective than the existing International Telecommunication Union-Radiocommunication Sector (ITU-R) P.617, P.452, and P.2001. Furthermore, by analysing the training parameters' proportion of the new model in different climate zones, the specific composition of three troposcatter mechanisms can be obtained.
引用
收藏
页码:332 / 341
页数:10
相关论文
共 50 条
  • [31] An Archive Based Particle Swarm Optimisation for Feature Selection in Classification
    Xue, Bing
    Qin, A. K.
    Zhang, Mengjie
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3119 - 3126
  • [32] RoughPSO: rough set-based particle swarm optimisation
    Fan, Jian-Cong
    Li, Yang
    Tang, Lei-Yu
    Wu, Geng-Kun
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 12 (04) : 245 - 253
  • [33] Particle Swarm Optimisation Applications in FACTS Optimisation Problem
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    Wahab, Noor Izzri Abdul
    Abd Kadir, Mohd Zainal Abidin
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 193 - 198
  • [34] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [35] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [36] Cultural-based particle swarm for dynamic optimisation problems
    Daneshyari, Moayed
    Yen, Gary G.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1284 - 1304
  • [37] Adaptive Parameter based Particle Swarm Optimisation for Accelerometer Calibration
    Dhalwar, Suraj
    Kottath, Rahul
    Kumar, Vipan
    Raj, Alex Noel Joseph
    Poddar, Shashi
    PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [38] Hybrid Particle Swarm Optimisation Based on History Information Sharing
    Fu, Wenlong
    Johnston, Mark
    Zhang, Mengjie
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 77 - 84
  • [39] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [40] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516