Flexible thermoelectric nanogenerator based on the MoS2/graphene nanocomposite and its application for a self-powered temperature sensor

被引:59
|
作者
Xie, Yannan [1 ]
Chou, Ting-Mao [2 ]
Yang, Weifeng [3 ]
He, Minghui [1 ]
Zhao, Yingru [1 ]
Li, Ning [1 ]
Lin, Zong-Hong [2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361000, Fujian, Peoples R China
[2] Natl Tsing Hua Univ, Inst Biomed Engn, Hsinchu 30013, Taiwan
[3] Agcy Sci Res & Technol A STAR, Inst Mat Res & Engn, Singapore 117602, Singapore
基金
中国国家自然科学基金;
关键词
nanogenerator; nanocomposite; 2D material; energy harvesting; self-powered sensor; PYROELECTRIC NANOGENERATORS; LAYER MOS2; PERFORMANCE; ENERGY; CONVERSION; FILMS;
D O I
10.1088/1361-6641/aa62f2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we report on a flexible thermoelectric nanogenerator (NG) based on the MoS2/graphene nanocomposite. The nanocomposite thermoelectric nanogenerator shows enhanced thermoelectric performance, compared with that based solely on MoS2 nanomaterials, which may be due to the enhanced electrical conductivity resulting from the graphene acting as a charge transfer channel in the composites. The NG can be further applied as a self-powered sensor for temperature measurement. This work indicates that the MoS2/graphene nanocomposite is a promising thermoelectric material for harvesting environmental thermal energy.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors
    Yang, Ya
    Lin, Zong-Hong
    Hou, Techien
    Zhang, Fang
    Wang, Zhong Lin
    NANO RESEARCH, 2012, 5 (12) : 888 - 895
  • [42] Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor
    Lin, Jyun-Hao
    Tsao, Yu-Hsiang
    Wu, Mei-Hsuan
    Chou, Ting-Mao
    Lin, Zong-Hong
    Wu, Jyh Ming
    NANO ENERGY, 2017, 31 : 575 - 581
  • [43] Ultrathin and Flexible Self-powered Temperature Sensor Based on Sputtered Tellurium Nanoparticles
    Khan, Imran
    Lin, Zong-Hong
    Wang, Yu-Lin
    SENSORS AND MATERIALS, 2020, 32 (08) : 2577 - 2584
  • [44] A triboelectric nanogenerator based on white sugar for self-powered humidity sensor
    Liu, Hongye
    Wang, Hao
    Fan, Yanping
    Lyu, Yan
    Liu, Zenghua
    SOLID-STATE ELECTRONICS, 2020, 174
  • [45] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [46] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [47] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [48] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [49] Cotton Based Self-Powered Temperature Sensor Based on Au-Augmented WS2 Triboelectric Nanogenerator
    Chekke, Tani
    Narzary, Ringshar
    Ngadong, Soni
    Satpati, Biswarup
    Bayan, Sayan
    Das, Upamanyu
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (01) : 238 - 249
  • [50] A Self-Powered Multifunctional Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Xu, Jie
    Wang, Yu
    Kong, Lingrong
    Wu, Chuan
    Su, Shida
    Rong, Heqi
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8252 - 8260