Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring

被引:0
|
作者
Yingzhe Li
Chaoran Liu
Sanshan Hu
Peng Sun
Lingxing Fang
Serguei Lazarouk
Vladimir Labunov
Weihuang Yang
Dujuan Li
Kai Fan
Gaofeng Wang
Linxi Dong
Lufeng Che
机构
[1] Hangzhou Dianzi University,Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, College of Electronics and Information
[2] Belarusian State University of Informatics and Radioelectronics,College of Information Science and Electronic Engineering
[3] Zhejiang University,undefined
来源
Acoustics Australia | 2022年 / 50卷
关键词
Acoustic energy; Self-powered sensor; Triboelectric nanogenerator; Sound monitoring;
D O I
暂无
中图分类号
学科分类号
摘要
Sound as a ubiquitous energy in our surroundings is clean and sustainable, and carries abundant information in a wide frequency bandwidth. However, effectively harvesting and utilizing acoustic energy is still hindered by the limitations such as low energy density of acoustic energy and lack of novel application. In this paper, we successfully present a self-powered acoustic sensor, which is composed of an adjustable spacing structure and sound-driven triboelectric nanogenerator (TENG). The acoustic sensor exhibits excellent electric output properties because of the poriferous electrode structure, ultrathin vibrating membrane as well as high-quality triboelectric materials. The sensor can deliver a maximal output voltage of 6.28 V with the sound frequency of 350 Hz and sound pressure of 110 dB. In addition, the electric output frequency is closely related to the applied acoustic wave and the corresponding directional dependence pattern as a butterfly is highly symmetrical. Our approach presents a cost-effective strategy to develop self-powered acoustic sensor and shows great potentials in home automation, self-powered microphone, sensor network and artificial intelligence.
引用
收藏
页码:383 / 391
页数:8
相关论文
共 50 条
  • [1] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    [J]. ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [2] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    [J]. ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [3] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [4] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    [J]. 2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [5] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    [J]. INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [6] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [7] Perspectives on self-powered respiration sensor based on triboelectric nanogenerator
    Chen, Yanmeng
    Li, Weixiong
    Chen, Chunxu
    Tai, Huiling
    Xie, Guangzhong
    Jiang, Yadong
    Su, Yuanjie
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (23)
  • [8] A Self-Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator
    Wu, Ying
    Jing, Qingshen
    Chen, Jun
    Bai, Peng
    Bai, Junjie
    Zhu, Guang
    Su, Yuanjie
    Wang, Zhong Lin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (14) : 2166 - 2174
  • [9] A Self-Powered Basketball Training Sensor Based on Triboelectric Nanogenerator
    Zhao, Zhenyu
    Wu, Chuan
    Zhou, Qing
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [10] Self-Powered Speed Sensor for Turbodrills Based on Triboelectric Nanogenerator
    Wu, Chuan
    Fan, Chenxing
    Wen, Guojun
    [J]. SENSORS, 2019, 19 (22)