Leveraging Deep Learning for Visual Odometry Using Optical Flow

被引:16
|
作者
Pandey, Tejas [1 ]
Pena, Dexmont [1 ]
Byrne, Jonathan [1 ]
Moloney, David [1 ]
机构
[1] Intel Res & Dev, Leixlip W23 CX68, Ireland
关键词
visual odometry; ego-motion estimation; deep learning;
D O I
10.3390/s21041313
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we study deep learning approaches for monocular visual odometry (VO). Deep learning solutions have shown to be effective in VO applications, replacing the need for highly engineered steps, such as feature extraction and outlier rejection in a traditional pipeline. We propose a new architecture combining ego-motion estimation and sequence-based learning using deep neural networks. We estimate camera motion from optical flow using Convolutional Neural Networks (CNNs) and model the motion dynamics using Recurrent Neural Networks (RNNs). The network outputs the relative 6-DOF camera poses for a sequence, and implicitly learns the absolute scale without the need for camera intrinsics. The entire trajectory is then integrated without any post-calibration. We evaluate the proposed method on the KITTI dataset and compare it with traditional and other deep learning approaches in the literature.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Sequential Adversarial Learning for Self-Supervised Deep Visual Odometry
    Li, Shunkai
    Xue, Fei
    Wang, Xin
    Yan, Zike
    Zha, Hongbin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2851 - 2860
  • [32] VLocNet++: Deep Multitask Learning for Semantic Visual Localization and Odometry
    Radwan, Noha
    Valada, Abhinav
    Burgard, Wolfram
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 4407 - 4414
  • [33] Stereo Visual Odometry Pose Correction through Unsupervised Deep Learning
    Zhang, Sumin
    Lu, Shouyi
    He, Rui
    Bao, Zhipeng
    SENSORS, 2021, 21 (14)
  • [34] Inferring sun direction to improve visual odometry: A deep learning approach
    Peretroukhin, Valentin
    Clement, Lee
    Kelly, Jonathan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (09): : 996 - 1016
  • [35] A Comparison of Deep Learning-Based Monocular Visual Odometry Algorithms
    Jeong, Eunju
    Lee, Jaun
    Kim, Pyojin
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 923 - 934
  • [36] A Visual Feature Mismatch Detection Algorithm for Optical Flow-Based Visual Odometry
    Li, Ruichen
    Shen, Han
    Wang, Linan
    Liu, Congyi
    Yi, Xiaojian
    UNMANNED SYSTEMS, 2024,
  • [37] Straight-Line Constrained Optical Flow Monocular Visual Odometry
    Du, Yingkui
    Liu, Cheng
    Chen, Yan
    Tian, Dan
    Han, Xiaowei
    Yuan, Zhonghu
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 668 - 672
  • [38] Speed Estimation Using Deep Learning with Optical Flow
    Mukai, Nobuhiko
    Nishimura, Naoki
    Chang, Youngha
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [39] Nonlinear Distortion Calibration of an Optical Flow Sensor for Monocular Visual Odometry
    Ng, Matthew
    Foong, Shaohui
    2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, : 1202 - 1207
  • [40] Deep Visual Odometry With Adaptive Memory
    Xue, Fei
    Wang, Xin
    Wang, Junqiu
    Zha, Hongbin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 940 - 954