Leveraging Deep Learning for Visual Odometry Using Optical Flow

被引:16
|
作者
Pandey, Tejas [1 ]
Pena, Dexmont [1 ]
Byrne, Jonathan [1 ]
Moloney, David [1 ]
机构
[1] Intel Res & Dev, Leixlip W23 CX68, Ireland
关键词
visual odometry; ego-motion estimation; deep learning;
D O I
10.3390/s21041313
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we study deep learning approaches for monocular visual odometry (VO). Deep learning solutions have shown to be effective in VO applications, replacing the need for highly engineered steps, such as feature extraction and outlier rejection in a traditional pipeline. We propose a new architecture combining ego-motion estimation and sequence-based learning using deep neural networks. We estimate camera motion from optical flow using Convolutional Neural Networks (CNNs) and model the motion dynamics using Recurrent Neural Networks (RNNs). The network outputs the relative 6-DOF camera poses for a sequence, and implicitly learns the absolute scale without the need for camera intrinsics. The entire trajectory is then integrated without any post-calibration. We evaluate the proposed method on the KITTI dataset and compare it with traditional and other deep learning approaches in the literature.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Monocular Visual Odometry Based on Optical Flow and Feature Matching
    Cheng Chuanqi
    Hao Xiangyang
    Zhang Zhenjie
    Zhao Mandan
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4554 - 4558
  • [22] Deep Direct Visual Odometry
    Zhao, Chaoqiang
    Tang, Yang
    Sun, Qiyu
    Vasilakos, Athanasios V.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7733 - 7742
  • [23] Deep Event Visual Odometry
    Klenk, Simon
    Motzet, Marvin
    Koestler, Lukas
    Cremers, Daniel
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 739 - 749
  • [24] Deep Patch Visual Odometry
    Teed, Zachary
    Lipson, Lahav
    Deng, Jia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [25] Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry
    Yang, Nan
    Wang, Rui
    Stueckler, Joerg
    Cremers, Daniel
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 835 - 852
  • [26] A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow
    Guangqiang Li
    Lei Yu
    Shumin Fei
    Journal of Intelligent & Robotic Systems, 2020, 100 : 1179 - 1194
  • [27] Real Time Monocular Visual Odometry using Optical Flow: Study on Navigation of Quadrotors UAV
    Mansur, Syaiful
    Habib, Muhammad
    Pratama, Gilang Nugraha Putu
    Cahyadi, Adha Imam
    Ardiyanto, Igi
    2017 3RD INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY - COMPUTER (ICST), 2017, : 122 - 126
  • [28] Robust Mono Visual-Inertial Odometry Using Sparse Optical Flow With Edge Detection
    Zeng, Qingxi
    Gao, Chang
    Chen, Zewang
    Jin, Yu
    Kan, Yuchao
    IEEE SENSORS JOURNAL, 2022, 22 (06) : 5260 - 5269
  • [29] A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow
    Li, Guangqiang
    Yu, Lei
    Fei, Shumin
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 100 (3-4) : 1179 - 1194
  • [30] Optimized Deep Learning for LiDAR and Visual Odometry Fusion in Autonomous Driving
    Zhang, Dingnan
    Peng, Tao
    Loomis, John S.
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29594 - 29604