EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism

被引:1
|
作者
Zhang, Xiaowei [1 ]
Li, Junlei [1 ]
Hou, Kechen [1 ]
Hu, Bin [1 ,2 ,3 ]
Shen, Jian [1 ]
Pan, Jing [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Gansu Prov Key Lab Wearable Comp, Lanzhou, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Brain Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China
[3] Chinese Acad Sci, Inst Biol Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R China
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
基金
中国国家自然科学基金;
关键词
SEX-DIFFERENCES; ALPHA; DIAGNOSIS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and non-stationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.
引用
收藏
页码:128 / 133
页数:6
相关论文
共 50 条
  • [31] EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention
    Hu, Zhangfang
    Chen, Libujie
    Luo, Yuan
    Zhou, Jingfan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [32] A Biologically Inspired Attention Network for EEG-Based Auditory Attention Detection
    Li, Peiwen
    Cai, Siqi
    Su, Enze
    Xie, Longhan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 284 - 288
  • [33] EEG-based biometric authentication system using convolutional neural network for military applications
    Vadher, Himanshu
    Patel, Pal
    Nair, Anuja
    Vyas, Tarjni
    Desai, Shivani
    Gohil, Lata
    Tanwar, Sudeep
    Garg, Deepak
    Singh, Anupam
    SECURITY AND PRIVACY, 2024, 7 (02)
  • [34] EEG-based anxiety emotion classification using an optimized convolutional neural network and transformer
    Qiang Li
    Yuhan Sun
    Yuting Xie
    Yan Zhou
    Signal, Image and Video Processing, 2025, 19 (6)
  • [35] EEG-Based Odor Recognition Using Channel-Frequency Convolutional Neural Network
    Zhang, Xiaonei
    Hou, Huirang
    Meng, Qinghao
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7763 - 7767
  • [36] Double Attention-Based Deep Convolutional Neural Network for Seizure Detection Using EEG Signals
    Shi, Lin
    Wang, Zexin
    Ma, Yuanwei
    Chen, Jianjun
    Xu, Jingzhou
    Qi, Jun
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024, 2024, 14882 : 392 - 404
  • [37] EEG-Based Auditory Attention Detection via Frequency and Channel Neural Attention
    Cai, Siqi
    Su, Enze
    Xie, Longhan
    Li, Haizhou
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (02) : 256 - 266
  • [38] A Riemannian Convolutional Neural Network for EEG-based motor imagery decoding
    Li, Changchun
    Gu, Zhenghui
    Neurocomputing, 2025, 639
  • [39] Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection
    Liu, Haojie
    Liu, Quan
    Cai, Mincheng
    Chen, Kun
    Ma, Li
    Meng, Wei
    Zhou, Zude
    Ai, Qingsong
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [40] Tactile-Based Fabric Defect Detection Using Convolutional Neural Network With Attention Mechanism
    Fang, Bin
    Long, Xingming
    Sun, Fuchun
    Liu, Huaping
    Zhang, Shixin
    Fang, Cheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71