A mean value formula for the variational p-Laplacian

被引:7
|
作者
del Teso, Felix [1 ]
Lindgren, Erik [2 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[2] Uppsala Univ, Dept Math, Box 480751 06, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
p-Laplacian; Mean value property; Viscosity solutions; Dynamic programming principle; VISCOSITY SOLUTIONS; VALUE PROPERTY; EQUIVALENCE; WEAK;
D O I
10.1007/s00030-021-00688-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a new asymptotic mean value formula for the p-Laplace operator, D(p)u = div(vertical bar del u vertical bar(p-2)del u), 1 < p < infinity valid in the viscosity sense. In the plane, and for a certain range of p, the mean value formula holds in the pointwise sense. We also study the existence, uniqueness and convergence of the related dynamic programming principle.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] On variational eigenvalues of the p-Laplacian which are not of Ljusternik-Schnirelmann type
    Drabek, Pavel
    Takac, Peter
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 625 - 649
  • [42] A variational characterisation of the second eigenvalue of the p-Laplacian on quasi open sets
    Fusco, Nicola
    Mukherjee, Shirsho
    Zhang, Yi Ru-Ya
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (03) : 579 - 612
  • [43] Variational approach of p-Laplacian impulsive differential equations with periodic conditions
    Oumansour, Abderrahmane
    Mahdjouba, Amina
    Henderson, Johnny
    Ouahab, Abdelghani
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (04) : 569 - 587
  • [44] Multiple positive solutions of singular p-Laplacian problems by variational methods
    Perera, Kanishka
    Zhang, Zhitao
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 377 - 382
  • [45] Existence of nontrivial solutions for p-Laplacian variational inclusion systems in RN
    Shen, Zifei
    Wan, Songqiang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (04) : 619 - 630
  • [46] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [47] A variational approach to the fredholm alternative for the p-Laplacian near the first eigenvalue
    Takac, Peter
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (03) : 693 - 765
  • [48] A Variational Approach to the Fredholm Alternative for the p-Laplacian near the First Eigenvalue
    Peter Takáč
    Journal of Dynamics and Differential Equations, 2006, 18 : 693 - 765
  • [49] On a variational inequality for a plate equation with p-Laplacian end memory terms
    Araujo, G. M.
    Araujo, M. A. F.
    Pereira, D. C.
    APPLICABLE ANALYSIS, 2022, 101 (03) : 970 - 983
  • [50] Variational approaches to p-Laplacian discrete problems of Kirchhoff-type
    Heidarkhani, Shapour
    Afrouzi, Ghasem A.
    Henderson, Johnny
    Moradi, Shahin
    Caristi, Giuseppe
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (05) : 917 - 938