A mean value formula for the variational p-Laplacian

被引:7
|
作者
del Teso, Felix [1 ]
Lindgren, Erik [2 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[2] Uppsala Univ, Dept Math, Box 480751 06, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
p-Laplacian; Mean value property; Viscosity solutions; Dynamic programming principle; VISCOSITY SOLUTIONS; VALUE PROPERTY; EQUIVALENCE; WEAK;
D O I
10.1007/s00030-021-00688-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a new asymptotic mean value formula for the p-Laplace operator, D(p)u = div(vertical bar del u vertical bar(p-2)del u), 1 < p < infinity valid in the viscosity sense. In the plane, and for a certain range of p, the mean value formula holds in the pointwise sense. We also study the existence, uniqueness and convergence of the related dynamic programming principle.
引用
收藏
页数:33
相关论文
共 50 条