A mean value formula for the variational p-Laplacian

被引:7
|
作者
del Teso, Felix [1 ]
Lindgren, Erik [2 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[2] Uppsala Univ, Dept Math, Box 480751 06, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
p-Laplacian; Mean value property; Viscosity solutions; Dynamic programming principle; VISCOSITY SOLUTIONS; VALUE PROPERTY; EQUIVALENCE; WEAK;
D O I
10.1007/s00030-021-00688-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a new asymptotic mean value formula for the p-Laplace operator, D(p)u = div(vertical bar del u vertical bar(p-2)del u), 1 < p < infinity valid in the viscosity sense. In the plane, and for a certain range of p, the mean value formula holds in the pointwise sense. We also study the existence, uniqueness and convergence of the related dynamic programming principle.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] A mean value formula for the variational p-Laplacian
    Félix del Teso
    Erik Lindgren
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [2] Asymptotic mean value properties for the P-Laplacian
    Rossi J.D.
    SeMA Journal, 2011, 56 (1): : 35 - 62
  • [3] A natural approach to the asymptotic mean value property for the p-Laplacian
    Ishiwata, Michinori
    Magnanini, Rolando
    Wadade, Hidemitsu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [4] A natural approach to the asymptotic mean value property for the p-Laplacian
    Michinori Ishiwata
    Rolando Magnanini
    Hidemitsu Wadade
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [5] Variational approach for a p-Laplacian boundary value problem on time scales
    Su, You-Hui
    Feng, Zhaosheng
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2269 - 2287
  • [6] Variational and non-variational eigenvalues of the p-Laplacian
    Binding, Paul A.
    Rynne, Bryan P.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (01) : 24 - 39
  • [7] Variational Approaches for a p-Laplacian Boundary-Value Problem with Impulsive Effects
    Shapour Heidarkhani
    Shahin Moradi
    Giuseppe Caristi
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 377 - 404
  • [8] Variational Approaches for a p-Laplacian Boundary-Value Problem with Impulsive Effects
    Heidarkhani, Shapour
    Moradi, Shahin
    Caristi, Giuseppe
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02) : 377 - 404
  • [9] CONTINUITY OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACIAN WITH RESPECT TO p
    Parini, Enea
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 376 - 381
  • [10] A Finite Difference Method for the Variational p-Laplacian
    del Teso, Felix
    Lindgren, Erik
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)