The classification of smooth toric weakened Fano 3-folds

被引:6
|
作者
Sato, H [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
10.1007/s002290200289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete classification of toric weakened Fano 3-folds, that is, smooth toric weak Fano 3-folds which are not Fano but are deformed to smooth Fano 3-folds. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [41] ON DEFORMATIONS OF Q-FANO 3-FOLDS
    Sano, Taro
    JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (01) : 141 - 176
  • [42] On Q-Fano 3-folds of Fano index 2
    Prokhorov, Yuri
    Reid, Miles
    MINIMAL MODELS AND EXTREME RAYS (KYOTO, 2011), 2016, 70 : 397 - 420
  • [43] SOME BIRATIONAL MAPS OF FANO 3-FOLDS
    TAKEUCHI, K
    COMPOSITIO MATHEMATICA, 1989, 71 (03) : 265 - 283
  • [44] Smooth toric Fano five-folds of index two
    Sato, Hiroshi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2006, 82 (07) : 106 - 110
  • [45] Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds
    Corti, Alessio
    Haskins, Mark
    Nordstroem, Johannes
    Pacini, Tommaso
    GEOMETRY & TOPOLOGY, 2013, 17 (04) : 1955 - 2059
  • [46] ONE-DIMENSIONAL COMPONENTS IN THE K-MODULI OF SMOOTH FANO 3-FOLDS
    Abban, Hamid
    Cheltsov, Ivan
    Denisova, Elena
    Etxabarri-Alberdi, Erroxe
    Kaloghiros, Anne-Sophie
    Jiao, Dongchen
    Martinez-Garcia, Jesus
    Papazachariou, Theodoros
    JOURNAL OF ALGEBRAIC GEOMETRY, 2024,
  • [47] Families of K3 Surfaces in Smooth Fano 3-Folds with Picard Number 2
    Mase M.
    Vietnam Journal of Mathematics, 2014, 42 (3) : 295 - 304
  • [49] Descendent theory for stable pairs on toric 3-folds
    Pandharipande, Rahul
    Pixton, Aaron
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (04) : 1337 - 1372
  • [50] GENERAL ELEPHANTS OF Q-FANO 3-FOLDS
    ALEXEEV, V
    COMPOSITIO MATHEMATICA, 1994, 91 (01) : 91 - 116