The classification of smooth toric weakened Fano 3-folds

被引:6
|
作者
Sato, H [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
10.1007/s002290200289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete classification of toric weakened Fano 3-folds, that is, smooth toric weak Fano 3-folds which are not Fano but are deformed to smooth Fano 3-folds. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [21] Classification of toric Fano 5-folds
    Kreuzer, Maximilian
    Nill, Benjamin
    ADVANCES IN GEOMETRY, 2009, 9 (01) : 85 - 97
  • [22] On Fano indices of Q-Fano 3-folds
    Suzuki, K
    MANUSCRIPTA MATHEMATICA, 2004, 114 (02) : 229 - 246
  • [23] Computing certain Fano 3-folds
    Brown, Gavin
    Suzuki, Kaori
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2007, 24 (03) : 241 - 250
  • [24] Computing certain Fano 3-folds
    Gavin Brown
    Kaori Suzuki
    Japan Journal of Industrial and Applied Mathematics, 2007, 24
  • [25] On the classification of toric Fano 4-folds
    Batyrev V.V.
    Journal of Mathematical Sciences, 1999, 94 (1) : 1021 - 1050
  • [26] Polyvector fields for Fano 3-folds
    Belmans, Pieter
    Fatighenti, Enrico
    Tanturri, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (01)
  • [27] FANO 3-FOLDS .2.
    ISKOVSKIH, VA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1978, 12 (03): : 469 - 506
  • [28] Toric 3-folds defined by quadratic binomials
    Shoetsu Ogata
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 459 - 470
  • [29] PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS
    Bruzzo, Ugo
    Grassi, Antonella
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (02)
  • [30] Toric 3-folds defined by quadratic binomials
    Ogata, Shoetsu
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (02): : 459 - 470