Discontinuous Legendre Wavelet Element Method for Reaction-Diffusion Equation from Mathematical Chemistry

被引:2
|
作者
Zheng, Xiaoyang [1 ]
Wei, Zhengyuan [1 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
关键词
Reaction-diffusion equation; Legendre wavelet; discontinuous Galerkin method; discontinuous Legendre wavelet element method; GALERKIN METHODS; BIOSENSORS;
D O I
10.1142/S021987621850113X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents discontinuous Legendre wavelet element (DLWE) approach for solving nonlinear reaction-diffusion equation (RDE) arising in mathematical chemistry. Firstly, weak formulation of the RDE and corresponding numerical fluxes are devised by utilizing the advantages of both Legendre wavelet and discontinuous Galerkin (DG) approach. Secondly, stability and error estimates of the proposed method have been addressed. Finally, numerical experiments demonstrate the validity and utility of the DLWE method, which is also applicable to solving some other kinds of partial differential equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] SOLUTION OF CONTRAST STRUCTURE TYPE FOR A REACTION-DIFFUSION EQUATION WITH DISCONTINUOUS REACTIVE TERM
    Wu, Xiao
    Ni, Mingkang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09): : 3249 - 3266
  • [32] Cubic B-spline finite element method for generalized reaction-diffusion equation with delay
    Lubo, Gemeda Tolessa
    Duressa, Gemechis File
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02): : 256 - 265
  • [33] The uniform convergence of a weak Galerkin finite element method in the balanced norm for reaction-diffusion equation
    Tao, Xia
    Hao, Jiaxiong
    Zhang, Yu
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 445 - 461
  • [34] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    王立文
    陈庆益
    ActaMathematicaScientia, 1993, (02) : 147 - 152
  • [35] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [36] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    WANG, LW
    CHEN, QY
    ACTA MATHEMATICA SCIENTIA, 1993, 13 (02) : 147 - 152
  • [37] A reaction-diffusion equation with memory
    Grasselli, M
    Pata, V
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (04) : 1079 - 1088
  • [38] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [39] Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term
    Nefedov, N. N.
    Ni, Minkang
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (12) : 2001 - 2007
  • [40] Uniform convergence of discontinuous finite element methods for singularly perturbed reaction-diffusion problems
    Li, JC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (1-2) : 231 - 240