Dynamic response of one-dimensional bosons in a trap

被引:25
|
作者
Golovach, Vitaly N. [1 ,2 ]
Minguzzi, Anna [3 ]
Glazman, Leonid I. [4 ]
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
[3] Univ Grenoble 1, CNRS, Lab Phys & Modelisat Milieux Condenses, F-38042 Grenoble, France
[4] Yale Univ, Dept Phys, New Haven, CT 06520 USA
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 04期
关键词
boson systems; laser cooling; optical lattices; INTERACTING BOSE-GAS; TONKS-GIRARDEAU GAS; CHAIN;
D O I
10.1103/PhysRevA.80.043611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the dynamic structure factor S(q,omega) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,omega) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,omega) remains a nonanalytic function of q and omega at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,omega) centered at the on-site repulsion energy, omega=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Cleacutement [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Polar bosons in one-dimensional disordered optical lattices
    Deng, Xiaolong
    Citro, Roberta
    Orignac, Edmond
    Minguzzi, Anna
    Santos, Luis
    PHYSICAL REVIEW B, 2013, 87 (19):
  • [42] Bound states of dipolar bosons in one-dimensional systems
    Volosniev, A. G.
    Armstrong, J. R.
    Fedorov, D. V.
    Jensen, A. S.
    Valiente, M.
    Zinner, N. T.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [43] THERMODYNAMIC PROPERTIES OF A ONE-DIMENSIONAL SYSTEM OF CHARGED BOSONS
    CRAIG, TW
    KIANG, D
    NIEGAWA, A
    PHYSICAL REVIEW E, 1993, 48 (05): : 3352 - 3360
  • [44] Dipolar bosons in a planar array of one-dimensional tubes
    Kollath, C.
    Meyer, Julia S.
    Giamarchi, T.
    PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [45] Asymptotic expansions for correlation functions of one-dimensional bosons
    N. A. Slavnov
    Theoretical and Mathematical Physics, 2013, 174 : 109 - 121
  • [46] Asymptotic expansions for correlation functions of one-dimensional bosons
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 174 (01) : 109 - 121
  • [47] Subdiffusion and localization in the one-dimensional trap model
    Bertin, EM
    Bouchaud, JP
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [48] Bose gases in one-dimensional harmonic trap
    Hou, Ji-Xuan
    Yang, Jing
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (04):
  • [49] One-dimensional rydberg gas in a magnetoelectric trap
    Mayle, Michael
    Hezel, Bernd
    Lesanovsky, Igor
    Schmelcher, Peter
    PHYSICAL REVIEW LETTERS, 2007, 99 (11)
  • [50] Boson pairs in a one-dimensional split trap
    Murphy, D. S.
    McCann, J. F.
    Goold, J.
    Busch, Th.
    PHYSICAL REVIEW A, 2007, 76 (05):