Dynamic response of one-dimensional bosons in a trap

被引:25
|
作者
Golovach, Vitaly N. [1 ,2 ]
Minguzzi, Anna [3 ]
Glazman, Leonid I. [4 ]
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
[3] Univ Grenoble 1, CNRS, Lab Phys & Modelisat Milieux Condenses, F-38042 Grenoble, France
[4] Yale Univ, Dept Phys, New Haven, CT 06520 USA
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 04期
关键词
boson systems; laser cooling; optical lattices; INTERACTING BOSE-GAS; TONKS-GIRARDEAU GAS; CHAIN;
D O I
10.1103/PhysRevA.80.043611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the dynamic structure factor S(q,omega) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,omega) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,omega) remains a nonanalytic function of q and omega at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,omega) centered at the on-site repulsion energy, omega=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Cleacutement [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.
引用
收藏
页数:23
相关论文
共 50 条
  • [32] Correlation functions for one-dimensional bosons at low temperature
    Kozlowski, K. K.
    Maillet, J. M.
    Slavnov, N. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [33] One-dimensional SU(3) bosons with δ-function interaction
    Li, YQ
    Gu, SJ
    Ying, ZJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : 2821 - 2838
  • [34] Dimer of two bosons in a one-dimensional optical lattice
    Javanainen, Juha
    Odong, Otim
    Sanders, Jerome C.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [35] Universal correlations of trapped one-dimensional impenetrable bosons
    Gangardt, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (40): : 9335 - 9356
  • [36] Bosons and fermions in a one-dimensional harmonic oscillator potential
    Wybourne, BG
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (03) : 1249 - 1252
  • [37] Quantum recurrences in a one-dimensional gas of impenetrable bosons
    Solano-Carrillo, E.
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [38] The excitation spectrum of bosons and fermions on the one-dimensional superlattice
    Goncalves, LL
    deLima, JP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (16) : 3447 - 3459
  • [39] Exact Results for the Boundary Energy of One-Dimensional Bosons
    Reichert, Benjamin
    Astrakharchik, Grigori E.
    Petkovic, Aleksandra
    Ristivojevic, Zoran
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [40] Spatiotemporal fermionization of strongly interacting one-dimensional bosons
    Guarrera, Vera
    Muth, Dominik
    Labouvie, Ralf
    Vogler, Andreas
    Barontini, Giovanni
    Fleischhauer, Michael
    Ott, Herwig
    PHYSICAL REVIEW A, 2012, 86 (02):