Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

被引:1
|
作者
Jarai, Antal A. [1 ]
Ruszel, Wioletta M. [2 ,3 ]
Saada, Ellen [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
关键词
Abelian sandpile; Uniform spanning tree; Conductance martingale; Wired spanning forest; INFINITE VOLUME LIMIT; MODEL;
D O I
10.1007/s00440-019-00951-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [1] Mean-field avalanche size exponent for sandpiles on Galton–Watson trees
    Antal A. Járai
    Wioletta M. Ruszel
    Ellen Saada
    Probability Theory and Related Fields, 2020, 177 : 369 - 396
  • [2] Galton-Watson Trees
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 11 - 17
  • [3] The width of Galton-Watson trees conditioned by the size
    Drmota, M
    Gittenberger, B
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2004, 6 (02): : 387 - 400
  • [4] SIMULATING SIZE-CONSTRAINED GALTON-WATSON TREES
    Devroye, Luc
    SIAM JOURNAL ON COMPUTING, 2012, 41 (01) : 1 - 11
  • [5] The genealogy of Galton-Watson trees
    Johnston, Samuel G. G.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [6] Parking on supercritical Galton-Watson trees
    Bahl, Riti
    Barnet, Philip
    Junge, Matthew
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02): : 1801 - 1815
  • [7] Long edges in Galton-Watson trees
    Bocharov, Sergey
    Harris, Simon C.
    JOURNAL OF APPLIED PROBABILITY, 2025,
  • [8] Minimax functions on Galton-Watson trees
    Martin, James B.
    Stasinski, Roman
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (03): : 455 - 484
  • [9] On transience of frogs on Galton-Watson trees
    Muller, Sebastian
    Wiegel, Gundelinde Maria
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 30
  • [10] Invasion percolation on Galton-Watson trees
    Michelen, Marcus
    Pemantle, Robin
    Rosenberg, Josh
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24