Energy asymptotics in the three-dimensional Brezis-Nirenberg problem

被引:5
|
作者
Frank, Rupert L. [1 ,2 ]
Konig, Tobias [3 ]
Kovarik, Hynek [4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Caltech, Math 253 37, Pasadena, CA 91125 USA
[3] Univ Paris, Inst Math Jussieu Paris Rive Gauche, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
[4] Univ Brescia, DICATAM, Sez Matemat, Brescia, Italy
基金
美国国家科学基金会;
关键词
ELLIPTIC-EQUATIONS; SOBOLEV EXPONENTS;
D O I
10.1007/s00526-021-01929-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bounded open set Omega subset of R-3 we consider the minimization problem S(a + epsilon V) = inf(0 not equivalent to u is an element of H01(Omega)) integral(Omega)(vertical bar del u vertical bar(2) + (a + epsilon V)vertical bar u vertical bar(2))dx/(f(Omega)u(6)dx)(1/3) involving the critical Sobolev exponent. The function a is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of S(a+epsilon V) - S as epsilon -> 0 +, where S is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to a and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have S(a+epsilon V) < S for all sufficiently small epsilon > 0.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Energy asymptotics in the three-dimensional Brezis–Nirenberg problem
    Rupert L. Frank
    Tobias König
    Hynek Kovařík
    [J]. Calculus of Variations and Partial Differential Equations, 2021, 60
  • [2] Energy asymptotics in the Brezis-Nirenberg problem: The higher-dimensional case
    Frank, Rupert L.
    Koenig, Tobias
    Kovarik, Hynek
    [J]. MATHEMATICS IN ENGINEERING, 2020, 2 (01): : 119 - 140
  • [3] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [4] The Brezis-Nirenberg problem on S
    Bandle, C
    Benguria, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) : 264 - 279
  • [5] On the generalised Brezis-Nirenberg problem
    Anoop, T., V
    Das, Ujjal
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [6] ON A BREZIS-NIRENBERG TYPE PROBLEM
    Catrina, Florin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [7] Multispike solutions for the Brezis-Nirenberg problem in dimension three
    Musso, Monica
    Salazar, Dora
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6663 - 6709
  • [8] ON THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Chen, Zhijie
    Zou, Wenming
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (5-6) : 527 - 542
  • [9] The Brezis-Nirenberg problem for nonlocal systems
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Squassina, Marco
    Zhang, Chengxiang
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 85 - 103
  • [10] A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES
    Carriao, Paulo Cesar
    Lehrer, Raquel
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,