4D Respiratory Motion-Compensated Image Reconstruction of Free-Breathing Radial MR Data With Very High Undersampling

被引:70
|
作者
Rank, Christopher M. [1 ]
Heusser, Thorsten [1 ]
Buzan, Maria T. A. [2 ,3 ,4 ]
Wetscherek, Andreas [1 ]
Freitag, Martin T. [5 ]
Dinkel, Julien [3 ,6 ,7 ]
Kachelriess, Marc [1 ]
机构
[1] German Canc Res Ctr, Med Phys Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[2] Iuliu Hatieganu Univ Med & Pharm, Dept Pneumol, Hasdeu Str 6, Cluj Napoca 400371, Romania
[3] Univ Heidelberg Hosp, Dept Diagnost & Intervent Radiol Nucl Med, Amalienstr 5, D-69126 Heidelberg, Germany
[4] Univ Heidelberg Hosp, Dept Diagnost & Intervent Radiol, Neuenheimer Feld 110, D-69120 Heidelberg, Germany
[5] German Canc Res Ctr, Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[6] TLRC, German Ctr Lung Res DZL, Neuenheimer Feld 430, D-69120 Heidelberg, Germany
[7] Ludwig Maximilians Univ Hosp Munich, Inst Clin Radiol, Marchioninistrasse 15, D-81377 Munich, Germany
关键词
4D MRI; respiratory motion compensation; joint estimation; undersampling; radial sampling; K-T FOCUSS; GENERALIZED RECONSTRUCTION; COMBINATION; STRATEGIES; CT; REGULARIZATION; REGISTRATION; INVERSION; FRAMEWORK; REDUCTION;
D O I
10.1002/mrm.26206
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop four-dimensional (4D) respiratory timeresolved MRI based on free-breathing acquisition of radial MR data with very high undersampling. Methods: We propose the 4D joint motion-compensated highdimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions. Results: For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 +/- 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively. Conclusions: 4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak arti-fact levels and high image sharpness. (C) 2016 International Society for Magnetic Resonance in Medicine
引用
下载
收藏
页码:1170 / 1183
页数:14
相关论文
共 50 条
  • [21] Compensating respiratory motion in PET image reconstruction using 4D PET/CT
    Qiao, Feng
    Pan, Tinsu
    Clark, John W., Jr.
    Mawlawi, Osama R.
    2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 2595 - 2598
  • [22] Graph-based retrospective 4D Image construction from free-breathing MRI slice acquisitions
    Tong, Yubing
    Udupa, Jayaram K.
    Ciesielski, Krzysztof C.
    McDonough, Joseph M.
    Mong, Andrew
    Campbell, Robert M.
    MEDICAL IMAGING 2014: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2014, 9038
  • [23] Effect of motion estimation methods on respiratory motion compensation in 4D quantitative PET image reconstruction
    Chen, Si
    Tsui, Benjamin
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50
  • [24] 4D image construction from free-breathing MRI slice acquisitions of the thorax based on a concept of flux
    Hao, You
    Udup, Jayaram K.
    Tong, Yubing
    Wu, Caiyun
    Li, Hua
    McDonough, Joseph M.
    Torigian, Drew A.
    Cahill, Patrick J.
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [25] The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study
    Tsoumpas, C.
    Polycarpou, I.
    Thielemans, K.
    Buerger, C.
    King, A. P.
    Schaeffter, T.
    Marsden, P. K.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (06): : 1759 - 1773
  • [26] Efficient 4D motion compensated lossless compression of dynamic volumetric medical image data
    Sanchez, V.
    Nasiopoulos, P.
    Abugharbieh, R.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 549 - 552
  • [27] Free-Breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction
    Moghari, Mehdi H.
    Roujol, Sebastien
    Chan, Raymond H.
    Hong, Susie N.
    Bello, Natalie
    Henningsson, Markus
    Ngo, Long H.
    Goddu, Beth
    Goepfert, Lois
    Kissinger, Kraig V.
    Manning, Warren J.
    Nezafat, Reza
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (04) : 1005 - 1015
  • [28] A Minimally Interactive Method for Labeling Respiratory Phases in Free-Breathing Thoracic Dynamic MRI for Constructing 4D Images
    Sun, Changjian
    Udupa, Jayaram K.
    Tong, Yubing
    Wu, Caiyun
    Guo, Shuxu
    McDonough, Joseph M.
    Torigian, Drew A.
    Cahill, Patrick J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (04) : 1424 - 1434
  • [29] Motion-Robust Free-Breathing Abdominal MR Fingerprinting (MRF) Using Radial Acquisition and Temporal Compressed Sensing Reconstruction: Initial Results
    Subashi, E.
    Yu, V.
    Wu, C.
    Koken, P.
    Doneva, M.
    Otazo, R.
    Cohen, O.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [30] Quick Low Dose 4D CBCT: Real Patient Results of Respiratory Motion Guided Imaging and Motion Compensated Reconstruction
    Dillon, O.
    Lau, B.
    Alnaghy, S.
    Keall, P.
    Vinod, S.
    Wallis, A.
    Smith, S.
    George, A.
    Sonke, J.
    O'Brien, R.
    MEDICAL PHYSICS, 2020, 47 (06) : E312 - E312