Machine Learning and Brain Imaging: Opportunities and Challenges

被引:4
|
作者
Paulus, Martin P. [1 ,2 ]
Kuplicki, Rayus [1 ,2 ]
Yeh, Hung-Wen [1 ,3 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Tulsa, OK 74104 USA
[3] Childrens Mercy Hosp, Hlth Serv & Outcomes Res, Kansas City, MO 64108 USA
关键词
D O I
10.1016/j.tins.2019.07.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Machine learning approaches may provide ways to link brain activation patterns to behavior at an individual-subject level. Using a comparative performance analysis, Jollans and colleagues (Neuroimage, 2019) highlight in a recent paper key considerations when applying machine learning algorithms to neuroimaging data.
引用
收藏
页码:659 / 661
页数:4
相关论文
共 50 条
  • [1] Machine learning in medical imaging: challenges and opportunities
    De Bruijne, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S9 - S9
  • [2] Machine Learning and Bias in Medical Imaging: Opportunities and Challenges
    Vrudhula, Amey
    Kwan, Alan C.
    Ouyang, David
    Cheng, Susan
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2024, 17 (02)
  • [3] Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities
    Kuestner, Thomas
    Hepp, Tobias
    Seith, Ferdinand
    [J]. NUKLEARMEDIZIN-NUCLEAR MEDICINE, 2023, 62 (05): : 306 - 313
  • [4] Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities
    Kuestner, Thomas
    Hepp, Tobias
    Seith, Ferdinand
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2022, 194 (06): : 605 - 612
  • [5] Challenges and opportunities in quantum machine learning
    M. Cerezo
    Guillaume Verdon
    Hsin-Yuan Huang
    Lukasz Cincio
    Patrick J. Coles
    [J]. Nature Computational Science, 2022, 2 : 567 - 576
  • [6] Challenges and opportunities in quantum machine learning
    Cerezo, M.
    Verdon, Guillaume
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 567 - 576
  • [7] Machine Learning for the Geosciences: Challenges and Opportunities
    Karpatne, Anuj
    Ebert-Uphoff, Imme
    Ravela, Sai
    Babaie, Hassan Ali
    Kumar, Vipin
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1544 - 1554
  • [8] Challenges and Opportunities in Machine Learning for Geometry
    Magdalena-Benedicto, Rafael
    Perez-Diaz, Sonia
    Costa-Roig, Adria
    [J]. MATHEMATICS, 2023, 11 (11)
  • [9] Challenges and Opportunities in Applied Machine Learning
    Brodley, Carla E.
    Rebbapragada, Umaa
    Small, Kevin
    Wallace, Byron C.
    [J]. AI MAGAZINE, 2012, 33 (01) : 11 - 24
  • [10] Hardware for Machine Learning: Challenges and Opportunities
    Sze, Vivienne
    Then, Yu-Hsin
    Emer, Joel
    Suleiman, Amr
    Zhang, Zhengdong
    [J]. 2018 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2018,