Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities

被引:0
|
作者
Kuestner, Thomas [1 ,3 ]
Hepp, Tobias [1 ]
Seith, Ferdinand [2 ]
机构
[1] Univ Hosp Tubingen, Dept Diagnost & Intervent Radiol, Med Image & Data Anal MIDASlab, Tubingen, Germany
[2] Univ Hosp Tubingen, Dept Diagnost & Intervent Radiol, Tubingen, Germany
[3] Univ Hosp Tubingen, Dept Diagnost & Intervent Radiol, Med Image & Data Anal MIDASlab, Hoppe Seyler Str 3, D-72076 Tubingen, Germany
来源
NUKLEARMEDIZIN-NUCLEAR MEDICINE | 2023年 / 62卷 / 05期
关键词
machine learning; hybrid imaging; multiparametric imaging; RESPIRATORY MOTION-COMPENSATION; NEURAL-NETWORKS; DEEP; CANCER; CLASSIFICATION; RECONSTRUCTION; IMAGES; MRI; CNN; RADIOMICS;
D O I
10.1055/a-2157-6670
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Machine learning (ML) is considered an important technology for future data analysis in health care.Methods The inherently technology-driven fields of diagnostic radiology and nuclear medicine will both benefit from ML in terms of image acquisition and reconstruction. Within the next few years, this will lead to accelerated image acquisition, improved image quality, a reduction of motion artifacts and - for PET imaging - reduced radiation exposure and new approaches for attenuation correction. Furthermore, ML has the potential to support decision making by a combined analysis of data derived from different modalities, especially in oncology. In this context, we see great potential for ML in multiparametric hybrid imaging and the development of imaging biomarkers.Results and Conclusion In this review, we will describe the basics of ML, present approaches in hybrid imaging of MRI, CT, and PET, and discuss the specific challenges associated with it and the steps ahead to make ML a diagnostic and clinical tool in the future.
引用
收藏
页码:306 / 313
页数:8
相关论文
共 50 条
  • [1] Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities
    Kuestner, Thomas
    Hepp, Tobias
    Seith, Ferdinand
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2022, 194 (06): : 605 - 612
  • [2] Machine learning in medical imaging: challenges and opportunities
    De Bruijne, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S9 - S9
  • [3] Machine Learning and Brain Imaging: Opportunities and Challenges
    Paulus, Martin P.
    Kuplicki, Rayus
    Yeh, Hung-Wen
    [J]. TRENDS IN NEUROSCIENCES, 2019, 42 (10) : 659 - 661
  • [4] Machine Learning and Bias in Medical Imaging: Opportunities and Challenges
    Vrudhula, Amey
    Kwan, Alan C.
    Ouyang, David
    Cheng, Susan
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2024, 17 (02)
  • [5] Challenges and opportunities in quantum machine learning
    Cerezo, M.
    Verdon, Guillaume
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 567 - 576
  • [6] Challenges and opportunities in quantum machine learning
    M. Cerezo
    Guillaume Verdon
    Hsin-Yuan Huang
    Lukasz Cincio
    Patrick J. Coles
    [J]. Nature Computational Science, 2022, 2 : 567 - 576
  • [7] Challenges and Opportunities in Applied Machine Learning
    Brodley, Carla E.
    Rebbapragada, Umaa
    Small, Kevin
    Wallace, Byron C.
    [J]. AI MAGAZINE, 2012, 33 (01) : 11 - 24
  • [8] Hardware for Machine Learning: Challenges and Opportunities
    Sze, Vivienne
    Then, Yu-Hsin
    Emer, Joel
    Suleiman, Amr
    Zhang, Zhengdong
    [J]. 2018 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2018,
  • [9] Machine Learning for the Geosciences: Challenges and Opportunities
    Karpatne, Anuj
    Ebert-Uphoff, Imme
    Ravela, Sai
    Babaie, Hassan Ali
    Kumar, Vipin
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1544 - 1554
  • [10] Challenges and Opportunities in Machine Learning for Geometry
    Magdalena-Benedicto, Rafael
    Perez-Diaz, Sonia
    Costa-Roig, Adria
    [J]. MATHEMATICS, 2023, 11 (11)