Machine Learning and Brain Imaging: Opportunities and Challenges

被引:4
|
作者
Paulus, Martin P. [1 ,2 ]
Kuplicki, Rayus [1 ,2 ]
Yeh, Hung-Wen [1 ,3 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Tulsa, OK 74104 USA
[3] Childrens Mercy Hosp, Hlth Serv & Outcomes Res, Kansas City, MO 64108 USA
关键词
D O I
10.1016/j.tins.2019.07.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Machine learning approaches may provide ways to link brain activation patterns to behavior at an individual-subject level. Using a comparative performance analysis, Jollans and colleagues (Neuroimage, 2019) highlight in a recent paper key considerations when applying machine learning algorithms to neuroimaging data.
引用
收藏
页码:659 / 661
页数:4
相关论文
共 50 条
  • [21] Machine learning in computational histopathology: Challenges and opportunities
    Cooper, Michael
    Ji, Zongliang
    Krishnan, Rahul G.
    [J]. GENES CHROMOSOMES & CANCER, 2023, 62 (09): : 540 - 556
  • [22] Opportunities and Challenges Of Machine Learning Accelerators In Production
    Ananthanarayanan, Rajagopal
    Brandt, Peter
    Joshi, Manasi
    Sathiamoorthy, Maheswaran
    [J]. PROCEEDINGS OF THE 2019 USENIX CONFERENCE ON OPERATIONAL MACHINE LEARNING, 2019, : 1 - 3
  • [23] Opportunities and Challenges for Machine Learning in Materials Science
    Morgan, Dane
    Jacobs, Ryan
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 71 - 103
  • [24] Machine learning for media compression: challenges and opportunities
    Said, Amir
    [J]. APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2018, 7 : 1 - 11
  • [25] Opportunities and Challenges for Deep Learning in Brain Lesions
    Patel, Jay
    Chang, Ken
    Ahmed, Syed Rakin
    Jang, Ikbeom
    Kalpathy-Cramer, Jayashree
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 25 - 36
  • [26] Hardware for Machine Learning: Challenges and Opportunities (Invited Paper)
    Sze, Vivienne
    Chen, Yu-Hsin
    Emer, Joel
    Suleiman, Amr
    Zhang, Zhengdong
    [J]. 2017 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2017,
  • [27] Automated Machine Learning for Industrial Applications - Challenges and Opportunities
    Bachinger, Florian
    Zenisek, Jan
    Affenzeller, Michael
    [J]. 5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 1701 - 1710
  • [28] Artificial intelligence/machine learning and journalology: Challenges and opportunities
    Shah, Prakesh S.
    Acharya, Ganesh
    [J]. ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2024, 103 (02) : 196 - 198
  • [29] Interpretable Machine Learning for Discovery: Statistical Challenges and Opportunities
    Allen, Genevera I.
    Gan, Luqin
    Zheng, Lili
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2024, 11 : 97 - 121
  • [30] Machine Learning for Geriatric Clinical Care: Opportunities and Challenges
    Javadi-Pashaki, Nazila
    Ghazanfari, Mohammad Javad
    Karkhah, Samad
    [J]. ANNALS OF GERIATRIC MEDICINE AND RESEARCH, 2021, 25 (02): : 137 - 138