Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators

被引:18
|
作者
Huang, Tianye [1 ,2 ]
Pan, Jianxing [1 ]
Cheng, Zhuo [1 ]
Xu, Gang [3 ]
Wu, Zhichao [1 ]
Du, Taoyuan [4 ]
Zeng, Shuwen [5 ]
Shum, Perry Ping [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Univ Auckland, Dodd Walls Ctr Photon & Quantum Technol, Dept Phys, Auckland 1142, New Zealand
[4] China Univ Geosci Wuhan, Sch Math & Phys, Wuhan 430074, Peoples R China
[5] Univ Limoges, XLIM Res Inst, CNRS, UMR 7252, F-87060 Limoges, France
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.103.023502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dissipative Kerr solitons based on microresonators have wide applications from optical communications to optical ranging for the high-repetition rate and broad bandwidth. Restricted by the bending losses and dispersion control of the optical waveguide, it could be hard to further realize ultrahigh-repetetion rate reaching several terahertz by simply reducing the size of microresonators. Soliton crystals, which completely fill the microresonator with a series of equidistant temporal pulses, can be an effective approach to realize ultrahigh-repetition rate in the common cavity length. In this paper, we investigate the generation of soliton crystals in the presence of nonlinear mode coupling, which can induce a modulation on the background wave and modify the cavity dynamics. Under the condition of suitable wave vector mismatch and nonlinear-coupling-coefficient, high-deterministic perfect soliton crystals can be realized. Besides, the drifting behavior of the soliton crystals is demonstrated to be determined by the match between the wave vector mismatch and nonlinear coupling coefficient. Finally, we successfully observe the recrystallization of the perfect soliton crystals.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Oscillating soliton molecules induced by strong vector-mode coupling
    Li, Jingyi
    Mao, Dong
    Gao, Qun
    He, Zhiwen
    Du, Yueqing
    Zeng, Chao
    Zhao, Jianlin
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [42] Theory of nonlinear whispering-gallery-mode dynamics in surface nanoscale axial photonics microresonators
    Kolesnikova A.Y.
    Vatnik I.D.
    Phys. Rev. A, 2023, 3
  • [43] Soliton dynamics and self-induced transparency in nonlinear nanosuspensions
    El-Ganainy, R.
    Christodoulides, D. N.
    Rotschild, C.
    Segev, M.
    OPTICS EXPRESS, 2007, 15 (16) : 10207 - 10218
  • [44] Advanced Organic and Polymer Whispering-Gallery-Mode Microresonators for Enhanced Nonlinear Optical Light
    Venkatakrishnarao, Dasari
    Mamonov, Evgeniy A.
    Murzina, Tatiana V.
    Chandrasekar, Rajadurai
    ADVANCED OPTICAL MATERIALS, 2018, 6 (18):
  • [45] Soliton dynamics at an interface between a uniform medium and a nonlinear optical lattice
    Abdullaev, Fatkhulla Kh.
    Galimzyanov, Ravil M.
    Brtka, Marijana
    Tomio, Lauro
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [46] All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
    D. O’Shea
    C. Junge
    M. Pöllinger
    A. Vogler
    A. Rauschenbeutel
    Applied Physics B, 2011, 105
  • [47] Controllable Phase shift of optical soliton through nonlinear tunneling in a dual mode optical fiber
    Veni, S. Saravana
    Rajan, M. S. Mani
    Vithya, Angelin
    OPTIK, 2021, 242
  • [48] All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
    O'Shea, D.
    Junge, C.
    Poellinger, M.
    Vogler, A.
    Rauschenbeutel, A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105 (01): : 129 - 148
  • [49] Acoustic mode coupling induced by nonlinear internal waves: Evaluation of the mode coupling matrices and applications
    Yang, T. C.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 135 (02): : 610 - 625
  • [50] Effects of nonlinear mode coupling on the chaotic dynamics of multimode lasers
    Ajvasjan, Yu.M.
    Ivanov, V.V.
    Kovalenko, S.A.
    Baev, V.M.
    Sviridenkov, E.A.
    Atmanspacher, H.
    Scheingraber, H.
    Applied physics Berlin, 1988, B46 (02): : 175 - 182